
23/09/2013

1

Capitalware's MQ Technical Conference v2.0.1.3

WMQ: Are z/OS & distributed
platforms like oil and water?

Lyn Elkins

elkinsc@us.ibm.com

IBM ATS

Mark Taylor

marke_taylor@uk.ibm.com

IBM Hursley

© 2013 IBM Corporation

Introduction

• One objective of MQ is isolating apps from needing to understand platforms
‒ There is a common API that can be expressed in many languages

• Another objective is to have (reasonably) common operational model
‒ Much of admin is the same on all platforms

• But it’s not all the same
‒ One dichotomy has always been whether to be natural to MQ-ness or behave like

other things on the platform

‒ Some features don’t make sense on some platforms

 For example, .Net interface is only on Windows

‒ Some features have not been implemented everywhere for other reasons

• So there are differences, and that is what this presentation will cover

• Will base this on V7.1 (z/OS) and V7.5 (Distributed)

23/09/2013

2

© 2013 IBM Corporation

Code Streams

• There are essentially two implementations of MQ from the Hursley lab
‒ z/OS

‒ Distributed (Windows, Unix, Linux, i)

‒ There are some further subspecies variants like VSE or NSS

• Within the Distributed implementation, there are some platform unique

features
‒ But we won’t discuss those here

‒ Most platform-unique code abstracts OS facilities like locking or NLS or threads

• In the early days, some code was written for one and then “ported”
‒ In particular, the channel code

‒ Meant double-fixing, and re-porting for each release

• Internal architecture (eg tasks, threads) very different
‒ But we won't discuss much of that. Understanding externals is more important

• Since V7.0, some code is truly common
‒ Just one copy of the source part shared between both

© 2013 IBM Corporation

Sections

• Setting up

• Application Programming

• Administration

23/09/2013

3

© 2013 IBM Corporation

How this presentation works

• Lyn will talk about z/OS in this color

• Mark will talk about Distributed in this colour

© 2013 IBM Corporation

Setting Up

23/09/2013

4

© 2013 IBM Corporation

Getting started

• Lots of differences in initial installation and setup

• Getting the code on the box is part on the job
‒ MQ uses native installation techniques for all platforms

‒ Needs a suitably-authorised person to do that installation

 SMPE for z/OS, installp for AIX, rpm for Linux etc

• But other differences primarily due to
‒ Security

‒ Storage

• Share philosophy of needing no more features than is found on any box
‒ So no prereq software for core capabilities of MQ

‒ But can exploit things that we know are there

 For example, on z/OS we use the system-provided SSL

‒ Some extended capabilities may have additional prereqs

 Shared Queues need DB2

© 2013 IBM Corporation

Security

• On Distributed, MQ implements its own authorisation mechanism
‒ There is no generally-accepted standard interface on these systems

• And relies on the existence of certain userids
‒ There are differences even between individual platforms

• On z/OS, MQ exploits the common authorization interface, SAF
‒ And so the z/OS security administrator has to be involved

‒ Define the profiles etc.

• Will look more at security later on

23/09/2013

5

© 2013 IBM Corporation

Storage (Distributed)

• On Distributed, MQ uses directories such as /var/mqm/qmgrs and

/var/mqm/logs
‒ The system administrator will probably allocate filesystems and mount them

‒ These days, may have separate SAN administrator

• Each queue has its own file within the filesystem
‒ To store the message data

‒ Each queue could hold 1TB

• Queues do not interfere with each other's storage requirements
‒ Subject to max size of filesystem

• Logs can be LINEAR or CIRCULAR
‒ Choice made when qmgr is created

‒ With linear logging, you then need a job to remove old log files

‒ MQ does not directly implement dual-logging; relies on RAID filesystems

© 2013 IBM Corporation

Storage (z/OS)

• Queues are handled via pagesets and bufferpools

• Multiple queues may use the same pageset and bufferpool
‒ Can lead to storage contention

• No direct equivalent of circular logging but constraints can be applied to

achieve a similar effect
‒ Semi-circular?

‒ Active logs are ‘almost like circular’, with offloading to archive logs

• Logs are managed via the BSDS

• MQ understands and implements Dual Logging

• Tool provided to format and extract messages from log

23/09/2013

6

© 2013 IBM Corporation

Shared Queues

• A z/OS-unique feature
‒ Multiple queue managers can see the same queue

‒ Continuous processing of messages from a queue even when one LPAR fails

• Relies on the Coupling Facility hardware
‒ And relies on DB2 Data Sharing

• Results in several unique possibilities
‒ Inter-qmgr communication without standard channels

‒ Dynamic selection of which qmgr to connect to

• Effects appear in many places
‒ For example, single MQSC command can be issued to multiple queue managers

giving multiple responses

© 2013 IBM Corporation

Extra Features

• MQ V7.5 on Distributed incorporated MFT (nee FTE) and AMS

• On z/OS, these are available as separate products

• Distributed MQ has the MQXR service for mobile (MQTT) clients
‒ Not available on z/OS

‒ Expected that mobile clients connect via front-end qmgr before hitting z/OS apps

23/09/2013

7

© 2013 IBM Corporation

Application Programming

© 2013 IBM Corporation

General

• Default codepages and encoding differ by platform

• Always use the header files for your platform
‒ Don't be tempted to cross-compile

• Maximum lengths of fields may vary

• MQI return codes may be different
‒ Often because underlying storage mechanisms have different error conditions

‒ For example, Coupling Facility errors on shared queues

• z/OS does not have MQ clients
‒ Some parameters to some verbs only apply in client environments

‒ For example, the MQCD passed during MQCONNX

23/09/2013

8

© 2013 IBM Corporation

API - Connections

• MQCONN/MQCONNX
‒ Verbs not required for CICS transactions

 MQHC_DEF_HCONN can be used for subsequent verbs in applications

‒ ConnTag is available to control serialization

 An application (especially an MCA) can tell if another instance of itself is already running

 On either the same local qmgr or any other in the QSG

‒ Group connection to QSG

‒ Lots of client-only options for connection

 MQCD can be specified

 Reconnect options

‒ MQCNO_SHARED options for multi-threaded applications

 Controls whether an hConn can be (serially) used by other threads in the same process

‒ Fastpath binding

‒ Control of accounting

 When accounting information is being collected, some apps may request exclusion

© 2013 IBM Corporation

API - Disconnections

• MQDISC
‒ Always recommended

‒ Rollback when application abends

 Although definition of "abend" is not clear in every case

 CICS and IMS do make it clear!

 A JVM has been known to return OK to the operating system even when the user's code

has caused a fatal exception

‒ Rollback when not used and application ends

23/09/2013

9

© 2013 IBM Corporation

API - Objects

• MQOPEN
‒ Default dynamic queue names begin with CSQ.* or AMQ.*

‒ Distributed can open multiple queues simultaneously via Distribution List

 Publish/Subscribe preferred cross-platform model

• MQCLOSE
‒ No platform differerences in practice

• MQSET
‒ Follows the same rules as MQSC attributes for platforms

• MQINQ
‒ Follows the same rules as MQSC attributes for platforms

© 2013 IBM Corporation

API - Messages

• MQPUT/MQPUT1
‒ Messages can be automatically segmented

 But Message groups are cross-platform

‒ Distributed supports "Reference messages" which can avoid putting large

amounts of data on a queue

• MQGET
‒ z/OS has "get with signal" to asyncronously notify app when messages appear

 MQCB is now preferred cross-platform model

‒ z/OS has MARK_SKIP_BACKOUT for simpler processing of poison messages

 Bad messages can be moved to an application-specific DLQ while backing out other

resource changes

‒ Distributed can get portions of messages via segmentation

• MQSUB
‒ No platform differences

• MQSUBRQ
‒ No platform differences

23/09/2013

10

© 2013 IBM Corporation

API – Flow control

• MQCB
‒ Definition of the callback function in MQCBD varies by environment

‒ eg C function pointer, CICS program name

• MQCTL
‒ Not in IMS adapter

‒ On z/OS, apps must be authorized to use USS

• MQSTAT
‒ Client applications only

‒ But usable regardless of server platform

© 2013 IBM Corporation

API - Properties

• MQDLTMP

• MQBUFMH

• MQCRTMH

• MQDLTMH

• MQMHBUF

• MQSETMP

• MQINQMP

• No platform differences

23/09/2013

11

© 2013 IBM Corporation

API - Transactions

• MQBEGIN
‒ Only available on Distributed

‒ z/OS always has a transaction manager available

• MQCMIT
‒ On all platforms when not running under external TM

• MQBACK
‒ On all platforms when not running under external TM

• Default for MQ transactional behaviour is different
‒ MQI on Distributed assumes NO_SYNCPOINT

‒ MQI on z/OS assumes SYNCPOINT

‒ Always specify syncpoint options on MQI calls

• Environments for two-phase transactions differ
‒ On z/OS, RRS CICS and IMS are all available for transaction management

‒ On Distributed, XA is available as the standard interface

 And MQ can act as a transaction manager

© 2013 IBM Corporation

Exits

• z/OS has API-Crossing exit for CICS
‒ But no other environments

• Distributed has API exit for all environments
‒ With a very different interface

• Installable Services on Distributed
‒ But very few people write these so not too interesting

‒ Primarily used for the OAM security module

• Channel send exit – ExitSpace field
‒ Used to reserve space in network transmission buffers for send exits

‒ Always zero on z/OS

• No publish exit on z/OS

• z/OS exits have MQXWAIT
‒ Necessary because process/thread model for channels is different

23/09/2013

12

© 2013 IBM Corporation

Administration

© 2013 IBM Corporation

Object Definitions

• Attributes and ini files
‒ Some items are queue manager attributes on one platform but not other

‒ z/OS has lots related to its storage

• Some unique object types
‒ z/OS has STGCLASS

‒ Distributed has SERVICES and COMMINFO

• Startup
‒ CSQZPARM is assembled/linked and other inputs run during startup

 Reset configuration, define default objects etc

‒ On Distributed, standard objects are created by qmgr creation and updated

during migration

23/09/2013

13

© 2013 IBM Corporation

Queue Manager operations

• Message Expiry
‒ z/OS has explicit config for timing of task to remove expired messages

‒ Distributed has a similar task but no documented configuration

• Security Cache Scavenger
‒ z/OS has parameters to control authority cache lifetime

‒ No equivalent on Distributed; use REFRESH SECURITY explicit command

• Storage Scavengers
‒ z/OS has tasks to release bufferpool and pageset storage

‒ Distributed will release queue file storage at intervals

• Queue Indexing
‒ z/OS has explicit indexes on queues to assist with retrieval patterns

‒ Distributed has hashing to perform similar role but no documented configuration

© 2013 IBM Corporation

Intercommunication and Clusters

• Channels are the same

• Clustering is essentially the same across all platforms

• MQ 7.5 introduced concept of multiple cluster transmission queues

23/09/2013

14

© 2013 IBM Corporation

Security – Access Control

• z/OS
‒ Uses system-provided interface for authorization

 SAF is common API to RACF, Top Secret, ACF2

‒ Has to work with the 4 permissions available in SAF

‒ No distinction between PUT and GET

 Often alias queues are used to isolate permissions

‒ Granular control of "impersonation" (setting context, alt-user)

‒ One operation may result in several authorization queries

• Distributed
‒ MQ-provided authorisation interface

 Implemented in the OAM

‒ Many permissions on objects

‒ Global controls on impersonation

 If you have authority to use alt-user, there are no constraints on which user

‒ Well-known "mqm" id for full authority

© 2013 IBM Corporation

Commands

• Basic OS-level commands are different
‒ Create, start, stop, delete queue manager procedures

‒ Distributed has command-line interface

‒ z/OS has JCL

• Issuing configuration commands like ALTER QLOCAL
‒ Distributed has runmqsc shell

‒ z/OS has ISPF panels for most commands

‒ And the +cpf commands for runmqsc equivalence

‒ MQ Explorer is product-provided common GUI

• Common programming interface (PCF) for configuration commands
‒ z/OS requires an "extended" format which may have multiple sets of responses

 Supporting a Queue Sharing Group environment

‒ Distributed supports the same format but not the default

‒ Differences are hidden in the Java PCF classes

23/09/2013

15

© 2013 IBM Corporation

Monitoring

• Many queue manager event messages are common
‒ For example, queue full

• But not every event is on every platform
‒ Authorisation, Logging, and Channel auto-definition events are Distributed only

‒ IMS Bridge events are only on z/OS

• Recording queue manager and application activity is very different
‒ z/OS has SMF 115 and 116 records

‒ Distributed has accounting, statistics and application activity events

• Distributed accounting and stats events are analogous to SMF 116
‒ No equivalent to 115 records

© 2013 IBM Corporation

Events Images

23/09/2013

16

© 2013 IBM Corporation

Problem Determination

• On Distributed, there are several places to look for PD information
‒ Error logs written to /var/mqm/errors and /var/mqm/qmgrs/<qmgr>/errors

‒ FFST written to /var/mqm/errors for serious errors

‒ Trace provided by MQ commands and written to /var/mqm/trace

• On z/OS, also numerous places to follow the clues:
‒ The MSTR and CHIN JES log

 Should always be the first place to look

‒ MQ API trace (aka user parameter trace) – a GTF trace

‒ SMF 115 statistical information

‒ SMF 116 class(3) accounting (task related) data

‒ A dump for serious problems

© 2013 IBM Corporation

Backup

• MAKEDEF and dmpmqcfg are tools to backup configuration

• On Distributed, backup of log files is done by stopping qmgr and copying

/var/mqm/log directory
‒ rcdmqing takes images of queues into logs

• On z/OS, full and fuzzy backups of pagesets are supported

• CFSTRUCT backup required for QSG
‒ takes image of shared queue into logs

23/09/2013

17

© 2013 IBM Corporation

High Availability and Disaster Recovery

• Shared queues on z/OS for continuous processing

• On Distributed, MQ provides multi-instance
‒ Not on z/OS because ARM is provided

• Cross-site DR will usually use disk replication for any platform

© 2013 IBM Corporation

Summary

• Title asks about oil and water

• Perhaps (olive) oil and (balsamic) vinegar is better description
‒ Blending together

