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Introduction

� Topics to be covered in this presentation:

� Brief overview of multi-instance queue manager support and its role as an HA solution

� How to validate the file system for use with multi-instance queue managers

� File system requirements and why they are what they are

� Queue manager status

� How file locking is used

� Liveness checking

� Troubleshooting

� Summary
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High Availability Options for MQ
� High availability managers

�Products designed to provide comprehensive system high availability
�Can cover multiple products – MQ, IIB, DB2, Oracle, WAS etc.
�Requires an HA manager such as 

� HACMP for AIX 

� ServiceGuard for HP

� Solaris Cluster

� Veritas Cluster Server 

� MSCS for Windows Server 

� Linux-HA

� Multi-instance support for MQ and IBM Integration Bus
�Provides basic failover for MQ and WMB/IIB only
�Software only
�Comes out of the box – no external HA coordinator needed
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HA Cluster Coordination behavior (1)
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HA Cluster Coordination behavior (2)
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HA Cluster Coordination behavior (3)
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Multi-instance queue manager behavior (1)
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Multi-instance queue manager behavior (2)
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Multi-instance queue manager behavior (3)
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Multi-instance queue manager behavior (4)
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What Multi-instance queue managers provide

� Basic failover support without separate HA coordinator 
� Failover support for queue manager only
� No data or IP failover 

� Queue manager data is held in networked storage (NAS, not SAN)
� Multiple machines see the queue manager data
� Multi-instance support requires  lease-based file locking

� NFS v4, GPFS, GFS2, CIFS (Windows only)

� Allows starting multiple (two) instances of a queue manager on different 
machines
� One instance is “active” – the other instance is “standby”
� Active instance “owns” the queue manager’s files

� Will accept connections from applications
� Standby instance does not “own” the queue manager’s files

� Applications cannot connect to standby instance

� If the active instance fails, performs queue manager restart and becomes active
� Instances share the data, so it’s the SAME queue manager
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What is a “Standby Instance”?

� A standby queue manager instance is essentially a queue manager paused 
in the early stages of queue manager startup

� It does not “own” the queue manager’s files and therefore is not capable of 
doing message processing

� “strmqm –x” is used to start an instance of a multi-instance queue 

manager
� The first instance will be the active instance

� The second instance will be the standby instance

� Additional instances are not permitted

� A standby instance:
� Polls file locks held by the active instance every 2 seconds 

� Tuning Parameter available to alter this if needed 

� A standby instance also is responsive to requests to end (“endmqm –x”)

� A standby instance is responsive to requests by applications trying to connect, but it 

rejects them
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Support for Network Filesystems
� As of MQ V7.0.1 support for network filesystems was properly integrated 

� Any “modern” network filesystem protocol with “proper” semantics supported

� NFS v4 (not v3), CIFS (Windows only), GPFS, GFS2, etc

� File systems such as NFS V4 provide leased-based file locking
� Can detect failures and then release locks following a failure. 

� Older file systems such as NFS V3 do not have a reliable mechanism to release locks 

after a failure

� Thus NFS V3 must not be used with multi-instance queue managers

� NFS v4 and also GPFS, GFS2, CIFS (for Windows only) can be used

� NFS v3 will generally work for MQ
� But it’s not adequate for multi-instance queue managers

� So NFS v3 is NOT SUPPORTED (no, not ever) by multi-instance queue managers

� Not all NFS v4 implementations are supported 
� They must behave strictly according to Posix rules 

� They must meet certain configuration requirements

� A tool is provided to validate configuration (amqmfsck)
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Validating the filesystem for MIQM (1)
� amqmfsck is a tool which checks out the filesystem

� The minimum steps to validate the file system are:
� amqmfsck /shared/qmdata

� This checks basic POSIX file locking behavior

� amqmfsck –w /shared/qmdata

� Use on two machines at the same time to ensure that locks are handed off correctly when a 
process ends.

� amqmfsck –c /shared/qmdata

� Use on two machines at the same time to attempt concurrent writes.

� The following can be used to shows whether the logger can guarantee data integrity.
� amqmfsck [–f NumberOfPages] –i /shared/qmdata

� Use on two machines at the same time, then do something dreadful to the first one, then run a 
third instance to analyse the wreckage.

� The top three steps are the minimum checks that should be performed

� Where we have put a restriction in the SOE, one of these tests fails.
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Validating the filesystem for MIQM (2)
� If one or more tests fail, the file system is not capable of supporting multi-

instance queue managers

� Run the tests using the verbose option (“-v”) to help you interpret the errors

� This will help you understand why the command failed, and whether the file system 
can be reconfigured to address the problem.

� Failures caused by access control problems are not uncommon

� These can usually be addressed by changing directory ownership or permissions. 

� Failures can also result from specific file system configuration options

� These can often be addressed by reconfiguring the file system to behave in a 
different way.

– File system performance options can fall into this category

– Resolving usually requires working closely with team that understands the 
underlying file system
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Validating the filesystem for MIQM (3)
� If the tests are successful, the following is returned:

“The tests on the directory completed successfully”

� Note that this is no guarantee!
� The file system can pass the checks but problems can still occur when doing so.
� Also, environments not listed as supported in the Testing and Support statement for  

multi-instance queue managers can sometimes pass these tests.
� So it is important that you verify that your environment is not excluded from the testing 

and support statement (http://www.ibm.com/support/docview.wss?&uid=swg21433474)  

� Be as thorough as possible with your tests
� Plan and run a variety of tests to satisfy yourself that you have covered all foreseeable 

circumstances. 
� Some failures are intermittent, and there is a better chance of discovering them if you run 

the tests more than once.
� More detailed guidance on using the amqmfsck command can be found in the Technote

at: http://www.ibm.com/support/docview.wss?uid=swg21446194.
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Shared File System Requirements
� Data write integrity

� The queue manager must know that written data is successfully committed to the physical device
� Transactional system like MQ require that some writes be safely committed before continuing with 

other processing

� Guaranteed exclusive access to files 
� In order to synchronize multiple queue manager instances, a mechanism for obtaining an exclusive 

lock on a file is required

� Release of locks on failure 
� If a queue manager fails, a file system or network error to the file system occurs, etc, files locked by 

the queue manager need to be unlocked and made available to other processes
� Must be possible without waiting for a failing queue manager to be reconnected to the file system.

� A shared file system must meet these requirements for WebSphere MQ to operate 
reliably
� If it does not, the queue manager data and logs get corrupted when using the shared file system
� These are fundamental requirements in order to ensure that messages are reliably written to the 

recovery log
� These are requirements (NOT recommendations or suggestions)!

� Requirements if you are using the NFS V4 as the shared file system:
� Hard mounts, synchronous writing and write caching must be disabled
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Why Hard Mounts?
� Soft versus Hard Mounting

� Govern the way the NFS client handles a server crash or network outage

� Key advantage of using NFS is that it can handle this gracefully

� Allow an application (MQ in this case) to KNOW the state of a failed write

� Hard Mounts
� When accessing a file on an NFS hard mount, if the server crashes MQ will hang 

� This is the good (for us) effect of a hard mount

� When the NFS server is back online the NFS client can reconnect and continue 

– Or if MQ fails the other instance can have a go at it

� Soft Mounts
� If a file request fails, the NFS client will not hang; it will (maybe) report an error 

� But there is no guarantee that the file request did not actually write some data

� This is a recipe for corrupted files and lost data

� You can only use soft mounts safely if you don't care that you might lose some data 

� MQ does not (cannot) tolerate this

� For this reason, multi-instance will not tolerate soft mounts
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Why Sync (rather than async)?
� These options determine how data is written to the server on a client request

� Whatever you do on an NFS client is converted to an RPC equivalent operation
� So that it can be send to the server using RPC protocol
� How these calls are handled differ when using async vs sync

� Using async permits the server to reply to client requests as soon as it has 
processed the request and handed it off to the local file system
� Without waiting for the data to be written to stable storage
� This yields better performance, but at the cost of possible data corruption

� e.g.if the server reboots while still holding unwritten data and/or metadata in its cache

� Async basically instructs the server to "lie" to the client, telling it the data is hardened when it is not
� If async is used MQ may continue to run apparently fine

� Because the possible data corruption may not be detectable at the time of occurrence

� But there might be a "hole" in the log, potentially making recovery impossible 

� Using sync does the reverse
� The server will reply only after a write operation has successfully completed
� Which means only after the data is completely written to the disk

� You should NEVER use the async option when dealing with critical data
� Data loss happens with async because the client thinks data was committed (server reports that the 

write is committed) before it actually is
� If the server crashed before actually committing any data, this would not be known by MQ
� With sync, we KNOW the state of the data on the server, and so can recover cleanly after a failure
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Why intr (rather than nointr)?

� In NFS V4, a file operation will normally continue until an RPC error occurs, 
or until it has completed successfully
� And if mounted hard, most RPC errors will not prevent the operation from continuing

� Even if the server is down, the process making the RPC call will hang until the 

server responds

� intr permits NFS RPC calls to be interrupted
� Forcing the RPC layer to return an error

� For MQ to fail over to a standby instance, RPC calls must be interruptible

� nointr will cause the NFS client to ignore signals
� Including those that would allow a queue manager to fail over
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What about Attribute Caching?
� noac (no attribute caching) is recommended

� Suppresses attribute caching and forces file attributes to be kept updated in the NFS 
client

� This will guarantee that on a read/write the NFS client will always have the most recent 
state of the file attributes

� Under normal circumstances MQ will operate correctly with attribute 
caching 
� But issues can arise when multiple NFS clients are contending for write access to the 

same file

� Such as the NFS clients associated with the active and standby MQ instances 

� Cached attributes used by each NFS client for a file might differ
� An example of files accessed in this way are queue manager error logs
� Error logs might be written to by both an active and a standby instance
� Result can be that the error logs grow larger than expected before they roll over

� Because of this, noac is recommended 
� You can use the NFS ac* options to try and fiddle with this
� But it's probably more trouble than it's worth
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NFS Mount Example (and it’s only an example)

� A typical NFS mount will look something like this:

us-0a00-nas01t:/mqrt_reg01 /nas/mqm/mqrt_reg01 nfs

rw,bg,sync,hard,intr,rsize=131072,wsize=131072,tcp,noac,vers=4

� Critical to note:

� Hard (required)

� Sync (required)

� intr (required)

� noac (recommended)

� An NFS mount can have many other options

� These can vary from vendor to vendor

� So there is no “standard” or “recommended” configuration beyond those required

� Work with your file system staff and vendor(s) to get the best performance and stability
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Checking Queue Manager Status (1)

� The dspmq command will identify instance status and mode:

C:\> dspmq –x

QMNAME(chris)                    STATUS(Running)

INSTANCE(MPLS1A) MODE(Active)

INSTANCE(MPLS1B) MODE(Standby)

� This is a multi-instance queue manager with two instances
� The active instance on MPLS1A and the standby instance on MPLS1B
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Checking Queue Manager Status (2)

� A multi-instance queue manager has additional status 
values that can be reported. Some examples:

� “Running as standby”

� The queue manager is defined here

� There is a standby instance running locally

� It holds the “standby lock”, polling the master and active 
locks in anticipation of the failure of the active instance

� “Running elsewhere”

� The queue manager is defined here

� There is no instance running here

� There’s an active instance on another machine

– The master and active locks are held

– qmstatus.ini reports “Running”

� dspmq queries the lock files in order to report the status
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Queue manager status – More detail

� qmstatus.ini contains several values related to multi-instance:
� PermitStandby = Yes | No

� Indicates whether the active instance was started permitting standby instances

� This is checked when the execution controller wants to become a standby instance

� PermitFailover = Yes | No

� Indicates whether a standby instance is permitted to failover when active crashes

� This is used to prevent a queue manager which crashes as it starts up from doing 

it again

� PlatformSignature = <numeric>

� Indicates which platform owns the data

� Prevents failover between different architectures and OSes

� PlatformString = <string>

� A string version of the platform signature used when reporting a mismatch between 

the running code and the qmstatus.ini
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Lock Files (1) 

� Three files are used to ensure single activation and report status:
� master

� Held in exclusive mode by the Execution Controller of the active instance
� active

� Held in shared mode by multiple queue manager processes, plus fastpath
applications

� standby

� Held in exclusive mode by the Execution Controller of the standby instance

� The lock files are used to coordinate the instances and by dspmq to report 
status for a multi-instance queue manager

� The master and active locks are held even by a normal queue manager
� Prevents accidental dual activation, even if multi-instance not being used
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Lock Files (2)

� An undocumented flag (“f”) on dspmq lets you see the state of the file locks:

C:\> dspmq –xf

QMNAME(chris)                    STATUS(Running)

INSTANCE(MPLS1A) MODE(Active)

INSTANCE(MPLS1B) MODE(Standby)

master(MPLS1A,1249388074)

active(MPLS1A,1249388074)

standby(MPLS1B,1249814329)

� The master, active and standby files contain a little data about the lock holder:
� Hostname
� Lock id (Identifies the queue manager instance)
� Lock time

� When an instance starts, it calculates the lock id which it writes into the lock 
files that it owns
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How are Queue Manager Lock files used?

� Periodically, in a multi-instance queue manager, lock files are reread and if the lock 
id doesn’t match, the lock has been stolen

� A lock file should never be stolen, and NFS should renew its leases automatically 

without MQ having to repeatedly use the locked files.

� But a queue manager won’t notice a lease expiring unless it periodically rereads its lock file

� So a “verify” thread reads the contents of the master file lock every 10 seconds 

– A Tuning  Parameter is available to change this if needed

� Because reading a file can block during a network outage, a “monitor” thread ensures 

that the verify thread is making progress checking the file

� If the verify thread stalls for 20 seconds, or the reading of the file lock fails, or the lock 

owner in the file changes, the queue manager “commits suicide”

AMQ7279: WebSphere MQ queue manager '&3' lost ownership of data lock. 

Explanation: The instance of queue manager &4 has lost ownership of a lock on its 

data in the file-system due to a transient failure. It was not able to re-obtain the 

lock and will stop automatically to prevent the risk of data corruption.

User response: Check that another instance of the queue manager has become active. 

Restart this instance of the queue manager as a standby instance. If this problem 

recurs, it may indicate that the file-system is not sufficiently reliable to support 

file locking by a multi-instance queue manager.



Capitalware's MQ Technical Conference v2.0.1.4

Other files that are locked

� A multi-instance queue manager takes file locks on other files too:
� The log control file and log extents (exclusive locks)

� The files for queues and other MQ objects (exclusive locks during restart, otherwise 

shared locks)

� These locks are an important part of the data integrity of the queue 

manager

� Also, NFS V4 performs better when these locks are held
� By holding a lock, data is written more eagerly to the filesystem (less buffering)

� The implication of the lock is that the data is shared between machines

� By holding a lock, you can tell whether a network outage occurred during 
which a conflicting lock was granted by the filesystem
� Without these locks, queue manager files (log, etc) could be corrupted
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Health checking

� Health-checking also takes place between queue manager processes

� The aim is to prevent orphaned processes for a failed queue manager
� Eliminate need for manual cleanup after a failure

� MQ processes and utility managers monitor the health of the Execution Controller

� MQ Processes don’t try and continue on after a failure
� Some of these would just not die

� Effect was often to make failures last longer, rather than avoid them
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Liveness Checking

� Multi-instance queue managers also have a liveness checking thread
� Only multi-instance queue managers have this

� Ensures that the queue manager is able to do productive work

� e.g. That the logger is making progress with writing log records

� Checks are very carefully handled to ensure QM doesn’t just blow up when it’s very 

busy (e.g. when using an external HA solution like Veritas)

� Checks every 60 seconds by default

� A Tuning Parameter is available to change this if needed

� The liveness checking runs on a separate thread and shoots the process issuing the 

actual I/O requests if it takes too long

� This results in the queue manager “committing suicide”

AMQ7280: WebSphere MQ queue manager '&3' appears unresponsive.

Explanation: The queue manager is monitoring itself for responsiveness. 

It is not responding sufficiently quickly and will automatically stop if 

it continues to be unresponsive.
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Problem Diagnosis – File systems

� The first problem that most people encounter is setting up the networked 
storage
� uid/gid mismatch

� Incorrect file permissions

� amqmfsck will diagnose these with a sensible message

� It’s vital that file locking actually works as advertised
� amqmfsck –w is your best friend here (tests waiting and releasing locks)

� It can be used to check that locks are handed off between processes and machines

� Make sure your file system is supported!

� http://www.ibm.com/support/docview.wss?&uid=swg21433474

� File system and network tuning are important!
� NFS client, NAS server, network, etc

� Poor performance can result in stalls and spurious fail-overs

� NAS remote backup, ETL jobs, etc can also trigger spurious fail-overs
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Problem Diagnosis – File integrity

� The MQ code has been carefully designed to eliminate file integrity 
problems during failover
� However it does depend on the file system behaving correctly

� Some file systems do not pass because they’ve been found to permit a failed write() 

call issued before a network outage to manage to write some data after the outage, 

even though the call failed

� Can result in log corruption (characterised by a “hole” in the log)

� May never be noticed, but media recovery will stop with “Media image not 

available”

� May result in queue corruption if restart processing reads the mangled data

� amqmfsck –i can be used to diagnose this

� It’s essentially the same sequence of calls as the logger and will diagnose an 

integrity problem caused by a network outage
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Problem Diagnosis – “Spurious failovers”

� Occasionally, customers report spurious queue manager failovers
� Stand-alone queue managers on the same infrastructure would be unaffected

� Could be triggered by the liveness-checks failing
� Stand-alone queue managers do not have this

� Cause is often poor file system performance
� Someone running an ETL job, remote file back-up, etc
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Summary

� The Multi-instance feature has been around some time now (5 years)

� File system must be NFS v4, with hard mounting, sync writes, I/O 

interruptible and caching disabled

� Control commands enhanced to report status of multi-instance queue 
managers

� File locking used to coordinate between instances on separate machines

� File locking also used to protect queue manager file integrity

� Configuration, monitoring and tuning of underlying file system important

� Problems usually involve file system issues



Capitalware's MQ Technical Conference v2.0.1.4

Questions?


