
Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

or

How fast is fast enough!

Capitalware's MQ Technical Conference v2.0.1.5

Table of Contents
 Background Information

 Synchronous versus Asynchronous

WMQ Programming Interfaces

 WMQ Message Processing
 Internal Processing

 WMQ Performance Tuning
 Key Concepts

 Actual Examples

 Performance Benchmarking
 Infrastructure / Application

 Tools

 Summary

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

Background Information

Capitalware's MQ Technical Conference v2.0.1.5

Synchronous versus Asynchronous
 Synchronous Processing

 Communicating programs (e.g. Application & Database) tightly coupled in time

 Calling program is blocked from executing while it waits for called program to complete

 Delays in processing by called program are experienced by the calling program.

 No backlogs, just increased latency!

 Asynchronous Processing
 Communicating programs (e.g. Application and WMQ) loosely coupled in time

 Calling program IS NOT blocked from executing while called program completes its

work

 Delays in processing by called program ARE NOT experienced by the calling program

 No increased latency, just backlogs!

 WMQ processing is always asynchronous!

 Programming patterns may simulate synchronous behavior
 Link two asynchronous calls together by the calling program. For example:

 MQPut (Write a Message)

 MQGet with a wait for response (Read a Message)

Capitalware's MQ Technical Conference v2.0.1.5

Synchronous Processing Diagram

Capitalware's MQ Technical Conference v2.0.1.5

Asynchronous Processing Diagram

Capitalware's MQ Technical Conference v2.0.1.5

Multiple Asynchronous Processes Diagram

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Programming Interfaces
 MQI

 Original API

 For Procedural languages (C, COBOL, RPG, Visual Basic)

 WMQ Classes for Java
 First Java API for MQSeries

o Designed by IBM, initially as SupportPac MA88

o Predates JMS

 WMQ Classes for JMS
 Second Java API for MQSeries

o Designed by Sun Microsystems

o Intended to be platform agnostic, but heavily influenced by the WMQ Classes for

Java

o Designed for feature set, not necessarily for performance
• Message Selectors

 WMQ Classes for .NET, ActiveX, and C++
 Supplied by IBM to support specific language and runtime environments

Capitalware's MQ Technical Conference v2.0.1.5

MQI (Message Queue Interface)

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Classes for Java

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Classes for JMS (Point to Point)

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Classes for JMS (Publish/Subscribe)

Capitalware's MQ Technical Conference v2.0.1.5

Key API Points
 Different APIs will have different performance characteristics

 Different API calls have different costs

 “Connect “is the most expensive call (in terms of latency)

 “Get” calls have things to consider

o Message Filters – response times degrade as queue depths increase

o Lock Contention – response time degrades as number of “Readers” increases

 API Calls are one of the WMQ Bottlenecks!

 Maximum number of API calls / second based upon the API call path length

 Application Architects and WMQ Administrators should know this number!

 Easy to determine, use the “Q” program: SupportPac MA01 (Thank you Paul Clarke)

o crtmqm TempQmgr

o strmqm TempQmgr

o echo “define qlocal(‘TempQueue’)” | runmqsc TempQmgr

o date

o echo “#!1000000/1024” | /…path…/q -m TempQmgr -ap –p1 -O TempQueue

o date

o The preceding commands write 1,000,000 messages of 1K size

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

WMQ Message Processing

Capitalware's MQ Technical Conference v2.0.1.5

Key WMQ Internal Processing Points
 API Calls

 Each Connection Handle (HCON) is associated with a single thread!

 API calls through the same Connection Handle are single-threaded!

 API Path Length is roughly 5 ms, resulting in about 200 MQ calls per second.

 Persistent messages are written to the log

 Message cannot be released to the application until the log write completes.

 Non-persistent messages are roughly 10 times faster than persistent messages!

 WMQ channel protocol is a blocking protocol

 MCA waits for an acknowledgement after each block is transmitted.

 Impacted by Batch Size (BATCHSZ) parameter.

 Impacted by the Batch Interval (BATCHINT) parameter.

 MCA agents on each Queue Manager must update the log for persistent messages.

 Multiple channels between Queue Manager pairs will significantly increase throughput.

 Message delivery sequence is generally “First In First Out” (FIFO)

 Separating large from small messages can yield significant QoS improvements

Capitalware's MQ Technical Conference v2.0.1.5

Message Processing – Application View

 Application view of WMQ
– WMQ is a “Black Box”

– Puts go in, Gets come out

 Application view of Puts
– Due to asynchronous nature of the “Put”, application unaware of the impacts

– From application perspective, more “Puts” equals more throughput

 Horizontal Scaling
 Applications will add additional instances and/or threads

 Often without regard, understanding, or consultation with MQ administrators

Capitalware's MQ Technical Conference v2.0.1.5

Message Processing – MQ View #1

 (01) MQPut by application

 (02) Move message to WMQ memory

 (03) Write persistent message to log

 (04) Move message from RAM to Disk

 (05) Acquire message lock

 (06) Update Log

 (07) Retrieve message (RAM or Disk)

 (08) Transmit message block

 (09) Receive message block

 (10) Acknowledge receipt of block

 (11) Move message into WMQ memory

 (12) Log Message

 (13) Move message from RAM to DISK

 (14) Acquire message lock

 (15) Update Log

 (16) Retrieve message (RAM or Disk)

 (17) MQGet & commit by application

Capitalware's MQ Technical Conference v2.0.1.5

Message Processing – MQ View #2

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

WMQ Performance Tuning

Capitalware's MQ Technical Conference v2.0.1.5

What does Performance Tuning Require?
 Understanding your specific WMQ Infrastructure

 Infrastructure Topology

o Clusters, Queue Managers, Channels

o Brokers, Execution Groups

 Application Resources

o Servers, Languages, External Software (WMQ, WMB/IIB, DB2/Oracle, etc.)

 Understanding WMQ Processing at a Resource Level

 CPU, Memory, Disk, Network

 Creating a Performance Model

 Abstracting detailed WMQ internal processing into key steps & bottlenecks

 Identifying key measurement points

o Processing steps that can be directly measured

o Processing steps that can be inferred

 Key Measurement Points

 Identifying what metrics can be measured

 Identifying how those metrics can be gathered

Capitalware's MQ Technical Conference v2.0.1.5

Key Concepts

 Memory versus Disk

 Processing messages in RAM is MUCH FASTER than processing them from DASD

 WMQ has a limited amount of memory available to each queue.

 This can be altered but normally should not be!

 Once the memory for the queue is exhausted, messages must be written to disk.
– Not Logging

– /var/mqm/qmgrs/QmgrName/queues

– Once this happens, all future messages will be read from disk until processing catches up

 Impedence

 Enqueue (arrival) rates versus Dequeue (consumption) rates:

 If messages arrive faster than they can be processed they must be queued!
– Messages will first be queued to memory,

– When memory is full, then they will be written to disk.

 The amount of memory buffering should be thought of in time (e.g. seconds).

 If arrival rates exceed comsumption rates, no amount of RAM will be enough.

Capitalware's MQ Technical Conference v2.0.1.5

Key Concept Implications

 System must be visualized as two separate functional components

 “Writers” generate messages.

 “Readers” consume messages.

 “Reader” capacity, on average, MUST exceed “Writer” capacity, on average.

 Horizontal Scaling

 Both “Readers” and “Writers” are single-threaded through the Connection Handle

 The API Path length limits the number of Gets or Puts per second per thread

 The only way to increase these twin limitations is additional threads:

 Additional instances of the application (e.g. more servers)

 A multi-threaded application

 You can’t tune without information

 Application topology

 WMQ topology

 Benchmark data

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Process Model – Sample #1

Capitalware's MQ Technical Conference v2.0.1.5

WMQ Process Model – Sample #2

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

Performance Benchmarking

Capitalware's MQ Technical Conference v2.0.1.5

Infrastructure Benchmarking – Execution 1

 Benchmarking Goals
 Identify Key Bottlenecks at the component/thread level

 Evaluate horizontal scaling solutions for bottlenecks

 Establish baseline performance numbers

o Infrastructure

o Application

 Benchmark Infrastructure First

 WMQ & Message Broker Capacities

 Test Load Generation

o Begin with single thread generating messages

o Add threads until backlog develops (e.g. Queue Depth > 0)

 Horizontally Scaling Behavior

o Adding Queue Managers (Clustering)

o Adding Channels (Parallel Processing)

 Traffic Behavior

o Client Bindings versus Server Bindings

o Persistent versus Non-persistent messages

o Small Message sizes versus Large Message sizes

Capitalware's MQ Technical Conference v2.0.1.5

Infrastructure Benchmarking – Execution 2

 Test Execution
 Leave End-to-End tests for last (unless a “smoke test” is needed first)

 Test Performance Model one hop at a time

o Tests are simpler to understand and execute

o Results illustrate basic capacities and bottlenecks

o This approach tends to more easily identify tuning opportunities

 Test Tools
 WebSphere MQ Settings

 MonQ and MonChl

 MA01 SupportPac (“Q” program) by Paul Clarke

 A “must have” tool.

 Easily generates single-threaded test loads.

 Can act as a back-end application for Request/Reply testing.

 MH04 SupportPac (“xmqstat” program) by Oliver Fisse

 Another “must have” tool.

 Summarizes queue statistics over duration of test.

 SoapUI & LoadUI

 Generate Web Service requests.

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MA01 – “q”
 Overview

 Queue I/O tool

 Category 2 SupportPac (“As Is” – no official IBM Support)

 Authored by Paul Clarke of MQGem (formerly of IBM Hursley Laboratory)

 Single executable to download; available for most Windows and UNIX platforms

 More options than you will ever need (The Swiss Army knife of WMQ)

 Usage
 Processing controlled by flags

o WMQ Connection (Client or Server bindings)

o Input and Output (File, Queue, Stdin, Stdout)

• Each record from stdin equates to either one command or one message

o MQ API Options (e.g. Persistence, Priority, etc.)

 Input Data

o Messages to be processed

o Commands to the ‘q’ program

o Input data may be “piped” into the command (Stdin)

• echo “#!100000/1024 Test Message” | q –m qmgrName –O queueName

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MA01 – “q” (continued)
 Invocation Examples

 q -m QmgrName -I InQueue -O OutQueue (Queue Queue)

 q -m QmgrName -f InFile -O OutQueue (File Queue)

 q -m QmgrName -I InQueue > OutFile (Queue File)

 q -m QmgrName -O QueueName (Stdin Queue)

 Input Commands
 “#” First character indicates this is a command and not a message

 ! Second character indicates not to echo the command to ouput (optional)

 9999 Number of messages to generate

 /9999 Size of message to be generated (Optional)

 xxx Text of message

 Queue name specification
 Queue Name may be preceded by a Queue Manager name

 Name separator characters (use only one)

o : “#”, “/”, “\”, or “,”

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MA01 – “q” (continued)
 Request Reply – Generating Request messages

 q -m QmgrName -O RemoteQmgr#RequestQueue -r ReplyToQmgr#ReplyToQueue

-apR

o Puts message to a request type queue on a remote Queue Manager

• Messages are put as Request messages (-aR)

• Messages are put as Persistent (-ap)

• Messages specify to the “Reply To” Qmgr and Queue (-r)

 Request Reply – Generating Reply messages
 q -m QmgrName -I RequestQueue -E –apr -w 300

o Gets request message and generates a reply message

• Messages are put as Reply messages (-ar)

• Messages are put as Persistent (-ap)

• Messages are written to the “Reply To” Qmgr and Queue (-E)

• Process will wait for incoming messages 5 minutes (-w 300)

 See slide notes for many additional parameters

 Better yet, see the MA01 readme.txt file!

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MH04 - xmqstat
 Overview

 Queue Statistics monitoring and reporting tool

 Category 2 SupportPac (“As Is” – no official IBM Support)

 Authored by Oliver Fisse of IBM Software Group (ISSW)

 Some minor configuration is required.

 Reported Data
 Time Current Time

 OIC Open Input Count (Number of input handles; e.g. reading threads)

 OOC Open Output Count (Number of output handles; e.g. writing threads)

 MxML Maximum Message Length

 MEC Message Enqueue count (Number of messages written)

 MDC Message Dequeue count (Number of messages read)

 UNC Uncommited messages (at end of monitoring interval)

 QCD Current Queue Depth (at end of monitoring interval)

 MxQD Maximum Queue Depth (during monitoring interval)

 GET Get Enabled/Disabled

 PUT Put Enabled/Disabled

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MH04 – xmqstat (continued)
 Extended Reported Data (-e option)

 PQF Percentage Queue Full (during monitoring interval)

 TQF Time to Queue Full (at present enqueue rate)

 TQE Time to Queue Empty (at present dequeue rate)

 The following extended data requires Queue Monitoring (MonQ) to be turned on

o QOM Queue Oldest Message (Age of oldest message in queue)

o OQTS Output Queue Time (Short) – Average time messages spent in queue

o OQTL Output Queue Time (Long) – Average time messages spent in queue

 Application Handle Information Reported (-h option)
 Data displayed as per DIS QS(queue) TYPE(HANDLE)

 Key Parameters
 -d Duration to collect statistics (in Seconds)

 -e Extended statistics (some require MONQ enabled)

 -f File name to write statistics to (default is stdout)

 -h Display information about Application Handles

 -i Statistics collection interval (in Seconds)

 -m Queue Manager name

 -q Queue name

 -s Suppress display if no activity during interval

 -t Display time

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MH04 – xmqstat (continued)
 Queue Manager Connection Parameters

 -v Use the MQSERVER environment variable for client connection

 -c Channel name to use for Client Connection

 -x ConnectionName (”address(port)”)

 Invocation Examples
 xmqqstat -m Qmgr -q Queue -d 300 -i 60 -h -e -s -t

o Connect to local Queue Manager using Server bindings

o Collect statistics on Queue on Qmgr (-m and –q)

o Collect statistics for 5 minutes (-d)

o Reportstatistics every minute (-i)

o Display Handle information (-h)

o Collect extended statistics (-e)

o Don’t report an interval if there is no activity (-s)

o Display the time (-t)

 xmqqstat -c SYSTEM.DEF.SVRCONN -x hostname(1414) -m Qmgr -q Queue …

o Connect to server hostname using port1414 (-x)

o Use SYSTEM.DEF.SVRCONN channel (-c)

 Notes
 Use Ctrl-C to stop execution

Capitalware's MQ Technical Conference v2.0.1.5

SupportPac MH04 – xmqstat (continued)

Capitalware's MQ Technical Conference v2.0.1.5

Application Benchmarking
 Far more difficult than Infrastructure testing!

 Requires co-ordination with one or more Application teams

o Communications

o Scheduling

 May require data setup and/or cleanup for each test

 More resource intensive; fewer iterations

 End-to-End Testing
 Different groups and tools collecting data

 Difficult to correlate all of the different data

 Frequently, too many cooks in the kitchen!

 Not very useful for fine grained analysis and tuning

 However, essential to benchmark application throughput and latency

 Latency versus Capacity

 Latency The round trip time of a single transaction

 Capacity The number of transaction per period of time (Seconds, Minutes, Days, etc)

 IBM Performance Reports

 Don’t forget to compare your results against IBMs!

Capitalware's MQ Technical Conference v2.0.1.5

Key Performance Indicators (KPIs)
 API Puts - Calls/Second; Bytes/Second

 First set of tests with no threads reading messages.

 Second set of tests with threads reading messages.

o Keep queue depth close to or equal to zero.

 Single Thread – 1K message size.

 Multiple Threads – 1K message size.

 Run Tests with Large Messages (e.g. 10 MB).

o Keep an eye on disk space utilization.

 Evaluate horizontal scaling (e.g. adding threads).

 Keep an eye on queue depths and disk space usage.

 Clean up messages after the test.

 API Gets - Calls/Second; Bytes/Second

 Single Thread – 1K message size.

 Multiple Threads – 1K message size.

 Run Tests with Large Messages (e.g. 10 MB).

 Message Channels

 Messages/Second; Bytes/Second

 Add additional channels and transmission queues to test scaling options

Capitalware's MQ Technical Conference v2.0.1.5

MQ Performance Tuning

Summary

Capitalware's MQ Technical Conference v2.0.1.5

Next Steps
 MoreTuning

 Iterative process

 Infrastructure Tuning (Channels) & Application Tuning (Architecture, Design, and

Programming)

 Requires considerable WMQ knowledge

o Application Design and Programming

o WMQ Internal Processing

o WMQ Data Gathering (measurements) & Testing tools

 Results are sometimes counter-intuitive

 Capacity Planning
 With benchmarks in place, overall system capacity can be estimated

 Will capacity meet business requirements and/or SLAs?

 Will capacity handle peak loads?

 Monitoring
 Now that you know how it will break, monitor to determine when it will break!

 Proactive upgrades before the Production outage takes place.

Capitalware's MQ Technical Conference v2.0.1.5

Key Takeaways
 WMQ processing is asynchronous

 Some application processes are “Writers”

 Some application processes are “Readers”

 Speed of writers unrelated to speed of readers

 Applications Scale Horizontally
 Applications increase capacity by adding additional instances

o Application Instances (e.g. Application Servers)

o Application threads

 When capacity of “Readers” exceeds capacity of “Writers”
 Performance is at maximum throughput

 Messages are processed in memory

 Queue Depths are at or near zero

 When capacity of “Writers” exceeds capacity of “Readers”
 Performance is at minimum throughput

 Messages are processed from disk

 Queue Depths are increasing

Capitalware's MQ Technical Conference v2.0.1.5

Reference Material

 IBM Developer Works
– Tuning for Performance

o http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/071

2_dunn.htmlText

 IBM SupportPacs
– http://www-01.ibm.com/support/docview.wss?rs=977&uid=swg27007205

– Performance Reports (MPxx)

o READ THESE!!! They have lots of information NOT FOUND ELSEWHERE!

o http://www-

01.ibm.com/support/docview.wss?rs=171&uid=swg27007150&loc=en_US&cs=utf-

8&lang=en

– MA01 SupportPac (“q”)

o http://www-

01.ibm.com/support/docview.wss?rs=171&uid=swg24000647&loc=en_US&cs=utf-

8&lang=en

– MH04 SupportPac (“xmqstat”)

o http://www-

01.ibm.com/support/docview.wss?rs=171&q1=Xa02&uid=swg24025857%20&loc=

en_US&cs=utf-8&lang=en

Capitalware's MQ Technical Conference v2.0.1.5

Deep Thoughts

Capitalware's MQ Technical Conference v2.0.1.5

Questions & Answers

Capitalware's MQ Technical Conference v2.0.1.5

Presenter
 Glen Brumbaugh

– Glen.Brumbaugh@TxMQ.com

 Computer Science Background
– Lecturer in Computer Science, University of California, Berkeley

– Adjunct Professor in Information Systems, Golden Gate University, San Francisco

 WebSphere MQ Background (20 years plus)
– IBM Business Enterprise Solutions Team (BEST)

o Initial support for MQSeries v1.0

o Trained and mentored by Hursley MQSeries staff

– IBM U.S. Messaging Solutions Lead, GTS

– Platforms Supported

o MVS aka z/OS

o UNIX (AIX, Linux, Sun OS, Sun Solaris, HP-UX)

o Windows

o iSeries (i5OS)

– Programming Languages

o C, COBOL, Java (JNI, WMQ for Java, WMQ for JMS)

mailto:Glen.Brumbaugh@TxMQ.com

Capitalware's MQ Technical Conference v2.0.1.5

