
Capitalware's MQ Technical Conference v2.0.1.5

Advanced MQTT

For Developers

Jeff Lowrey, IBM

Capitalware's MQ Technical Conference v2.0.1.5

Introduction

 This Talk IS :
A discussion of advanced topics in MQTT application design

and architecture to help you turn an application into a highly

scalable, performant and secure solution.

A discussion of the on-the-wire structure of MQTT packets.

 This Talk Is NOT:
A lengthy discussion of MQTT Server internals

A lengthy discussion of any particular MQTT Server

A lengthy discussion of any particular MQTT Client

A comparison of performance between different Clients,

Servers, or language bindings

Capitalware's MQ Technical Conference v2.0.1.5

Concepts Covered

 Quality of Service : Performance impact and selection criteria

 Topic Tree design for security, managability and performance

 Connection scaling and pooling/sharing

 Wire level packet information and flow

Concepts not covered

 Client language bindings and available Clients

 Mobile versus web versus embedded devices

 Server management

 Message Ordering

Capitalware's MQ Technical Conference v2.0.1.5

A quick review of basics

 MQTT is small!
 Packets are small, Clients are small.

 Therefore good for embedded devices and mobile apps

 Pub/Sub messaging only
 no queue based messaging

 The MQTT standard does not allow it.

 Open standard – Official OASIS standard available at

 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

 Multiple qualities of service – at most once, at least once, once and only

once.

 Many Client implementations, many Server choices.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Capitalware's MQ Technical Conference v2.0.1.5

Advanced

Application design

and architecture

Capitalware's MQ Technical Conference v2.0.1.5

 The Client ID is the primary identifier for the Client.

 Every Client must have a unique ClientID.

 A zero length ClientID causes the server to create one,

but only with CleanSession = 1 (set).

 The ClientID MUST be used to tie the Client to the

session in the Server.

 If a second Client presents the same ClientID on a new

connection, the Server MUST disconnect the other

session. The server assumes this is the same client

reconnecting.

Client ID

Capitalware's MQ Technical Conference v2.0.1.5

Session State

 The Client can create a new session by asking for CleanSession.

Both the Server and Client MUST delete their session. The Server

returns a new session with new state. This session lasts until

disconnect and state cannot be reused in a new session.

 If you want a new session that you can reuse, you must connect

with CleanSession = 1, disconnect, and then connect with

CleanSession = 0

 The Client and the Server are BOTH required to maintain the

session and it’s state. The Session Present tells the Client that it’s

state is consistent with the Server’s state.

Capitalware's MQ Technical Conference v2.0.1.5

Quality of Service: Performance Impact

 MQTT supports three Qualities of Service – 0, 1, and 2.

 The performance of the different QoSes varies significantly.

 MQTT Servers need to store QoS 1 and 2 messages on disk or

other persistent storage. This adds performance overhead.

 This is very similar to MQ, where persistent messages can be much

slower than non-persistent messages. And NPMSpeed can speed

up non-persistent messages even more.

Capitalware's MQ Technical Conference v2.0.1.5

Choosing and using QoS For your Applications

 Use QoS 0 messages for everything – use application level

responses to notify of message receipt or processing.

 Use QoS 1 when QoS 0 is not sufficient.

 Use QoS 2 messages ONLY when you *have* to.

 Design your messages to tolerate QoS 0 and QoS 1 behavior –

include historical data, sequence or group information, duplicate

messages and etc.

 QoS is negotiated by the Server when a subscription is made. The

subscriber requests a specific QoS, and the Server returns what

the maximum allowed is. The spec makes no comments on how

this decision is made.

Capitalware's MQ Technical Conference v2.0.1.5

Scenario: Sensor, Main Office, Mobile

 Sensor emits QoS 0 readings and responses to commands and requests

 The mobile app uses QoS 0 messages for everything.

 The Main Office uses QoS 2 Messages only for high priority commands –

shutdown, unregister, clear data, warp core ejection, etc.

Readings
Requests and commands

QoS 2 Commands

Push Notifications

QoS 2 Commands
Readings

Actions

Capitalware's MQ Technical Conference v2.0.1.5

Topic Tree Design

Security considerations
 Your MQTT Server may or may not provide topic level security. Topic Level

security is not required by the spec!

 The spec doesn’t even require security on the connection – but allows it.

 MessageSight, and Mosquitto provide security on topics, but RabbitMQ

does not. Mosqitto requires a plugin. MessageSight has lots of good

information on it’s security features and how to use them in the

Knowledge Center.

 You should design your topics so that specific parts of the topic tree can

be authorized to the right people.

 Example: A set of devices will be subscribing to notifications from a main

office. The topic tree should include a device identifier to ensure that each

device is only allowed to get updates that belong to it.

Capitalware's MQ Technical Conference v2.0.1.5

Topic Trees and subscription wildcards

 The MQTT standard specifies two wildcard characters : “#” and “+” (in

UTF-8). The “#” is a multi-level wildcard and the “+” is a single level. So

“Topic/abc/#” will match “Topic/abc/name” and “Topic/abc/def/Client” and

etc. “Topic/+/name” will only match “Topic/abc/name”.

 The “#” must be the last character specified in the Topic Filter

 The “+” can be specified at any level in the Topic Filter and can be used

more than once.

 Your Topic tree structure should allow you to specify authorization rules

based on these wildcards.

 Example: If your topic tree looks like

“/App/Customer/CustID/Sensor/SensorType/SensorID”, then you can

specify a Topic Filter that limits a specific sensor to both it’s CustID and

it’s SensorID using “/App/Customer/CustID/+/+/SensorID”.

Capitalware's MQ Technical Conference v2.0.1.5

Well Designed Topic Structures allow granular access control:

 /App/Customer/CustID/Sensor/SensorType/SensorID – Root topic

 ../Reading - any device can publish, only Main Office (and

specific mobile devices) can subscribe

 ../Command – only Main app can publish, Sensors can only

subscribe to their specific customer ID and SensorID topic.

Scenario: Topic Security

 Sensor to Main Office App

Readings

Requests and commands

Capitalware's MQ Technical Conference v2.0.1.5

Connection scaling and pooling/sharing

 MQTT Connections are full duplex. Publishing and subscribing on

the same connection is only a performance consideration when the

workload is very high.

 Pooling or dispatching subscriptions to multiple threads will

remove the MQTT ability to maintain message ordering. For

specific applications, this may be an issue.

 Application logic can use Client id or message data to preserve

message ordering.

 Take advantage of the MQTT Client asynchronous dispatch of

subscriptions.

Capitalware's MQ Technical Conference v2.0.1.5

Scenario: Connection Scaling

 The sensor uses a single connection to send and receive messages to the main app.

 The main app uses a single connection to receive publications and dispatches them to internal

synchronized data structures (queue,stack,etc) based on ClientID or business identifier in

message data to preserve message order.

 The main app then processes the messages asynchronously using internal threads.

 If volume of incoming messages grows too large, additional connections can be used to

dispatch to new instances of the internal structures.

Connection(s)

Application Internals

Synchronized Structures

Threads

Dispatch

Capitalware's MQ Technical Conference v2.0.1.5

Questions & Answers

Capitalware's MQ Technical Conference v2.0.1.5

MQTT

On the Wire
Tools, Packet flow, high level

Packet structures

Capitalware's MQ Technical Conference v2.0.1.5

MQTT on the wire - Tools

Some Tools for wire level debugging/non-repudiation (proving “it’s

not MQTTs fault!”)

All of these require dealing with SSL first, to state the obvious.

 Wireshark MQTT Decoder: http://false.ekta.is/2011/06/mqtt-

dissector-decoder-for-wireshark/

 Node.js MQTT Encode/Decode https://github.com/mqttjs/mqtt-

packet

 Perl decoder: http://search.cpan.org/~beanz/Net-MQTT-

1.130190/bin/net-mqtt-trace

 Many more, just search for “mqtt packet decoder”

http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
http://false.ekta.is/2011/06/mqtt-dissector-decoder-for-wireshark/
https://github.com/mqttjs/mqtt-packet
https://github.com/mqttjs/mqtt-packet
https://github.com/mqttjs/mqtt-packet
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace
http://search.cpan.org/~beanz/Net-MQTT-1.130190/bin/net-mqtt-trace

Capitalware's MQ Technical Conference v2.0.1.5

MQTT on the wire – Flow of Packets

 Some obvious points:

 MQTT packets flow in both directions between

Client and Server

 Only the Client can connect and start packet

exchanges.
 Packet flow is described by the standard.

 Packets used are : connect, connack, publish, puback,

pubrec, pubrel, pubcomp, subscribe, suback,

unsubscribe, unsuback, pingreq, pingresp,disconnect

Capitalware's MQ Technical Conference v2.0.1.5

Connection Packet Flow

Client

1. CONNECT

2. Processes

3. Timeout –

Client closes

connection

Server

1. Processes

2. CONACK

CONNACK must be the first packet sent back from

the Server. It is up to the Client to decide what a

reasonable timeout is.

Capitalware's MQ Technical Conference v2.0.1.5

Publish Packet Flow – QoS 0

Client

1. PUBLISH

Server

1. PUBLISH

Client

1. Process

Client

1. Processes

Both Client and Server send PUBLISH packets.

With QoS 0 there is no return packet from PUBLISH.

If Server does not authorize the Client to publish, it must close

the connection OR make a positive acknowledgement per QoS

rules.

Capitalware's MQ Technical Conference v2.0.1.5

Publish Packet Flow – QoS 1

Client

1. PUBLISH

2. Process

Server

1. PUBLISH

2. PUBACK

3. Process

Client

1. Process

2. PUBACK

Both Client and Server send PUBLISH packets.

With QoS 1 the Receiver sends back a PUBACK packet.

If Server does not authorize the Client to publish, it must close

the connection OR make a positive acknowledgement per QoS

rules.

Capitalware's MQ Technical Conference v2.0.1.5

Publish Packet Flow – QoS 2

With QoS 2 the Sender emits PUBLISH and PUBREL. The

Receiver can either store the message or the packet ID. Each

receiver must respond with a PUBREC and then a PUBCOMP.

When the sender gets the PUBREC, it should discard the

message and store the PUBREC packet ID.

Sender

1. PUBLISH

2. Process

3. PUBREL

4. Process

Receiver (Server)

1. Store Msg

2. PUBREC

3. Process

4. PUBCOMP

Receiver

1. Store Msg

2. PUBREC

3. Process

4. PUBCOMP

Server (Sender)

1. PUBLISH

2. Process

3. PUBREL

4. Process

Capitalware's MQ Technical Conference v2.0.1.5

Subscription Packet Flow

Client

1. SUBSCRIBE

2. Processes

Server

1. Processes
1. PUBLISH

(optional)

2. SUBACK

SUBACK must be sent. There is no guarantee that SUBACK

will come before the first message. QoS is negotiated – Client

requests a QoS, the Server gives back the maximum allowed.

Each SUBACK contains responses for every Topic Filter/QOS

pair in the SUBSCRIBE.

Capitalware's MQ Technical Conference v2.0.1.5

Unsubscribe Packet Flow

Client

1. UNSUBSCRIBE

2. Processes

Server

1. Processes

2. UNSUBACK

UNSUBACK must be sent. The Server removes all Topic Filters

that exactly match.

Each UNSUBACK contains responses for every Topic Filter in

the UNSUBSCRIBE.

Capitalware's MQ Technical Conference v2.0.1.5

Ping Request Packet Flow

Client

1. PINGREQ

2. Processes

Server

1. Processes

2. PINGRESP

PINGRESP must be sent.

Ping request is used to tell the Server that the Client is alive,

tell the Client that the Server is alive, or indicate that the

network connection is still active.

Capitalware's MQ Technical Conference v2.0.1.5

Disconnect Packet Flow

Client

1. DISCONNECT

Server

1. Processes

No response is sent, no payload is allowed.

The Client closes the network connection.

The Server discards any Will Messages without publishing

them. It should close the connection if the Client hasn’t done

so.

Capitalware's MQ Technical Conference v2.0.1.5

High Level Packet Structures

 Each Packet consists of a fixed header, a variable

header and a payload.

 The fixed header is common to all packets but fields

vary per packet.

 The variable header and the payload are different for

each packet.

 All headers use bit-level fields.

 Payloads vary for each packet – Publish payload is the

topic and the application message.

Capitalware's MQ Technical Conference v2.0.1.5

MQTT Fixed Header

 The fixed header consists of two parts: the first byte with flags and

the length of the remaining packet data.

 Each byte in the remaining length uses 7 bits and a continuation bit

to indicate there’s another byte.

 No more than 4 bytes can be used for the remaining length.

 The MQTT Control packet type maps to the individual packets, and

both value 0 and value 15 are reserved (so 1-14 are valid packet

types)

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet

type

Flags specific to each

MQTT Control Packet

type

byte 2… Remaining Length

Capitalware's MQ Technical Conference v2.0.1.5

MQTT Control Packet Flags

 The remaining 4 bits (3 to 0) are used differently for

each packet type.

 In MQTT3.1 only the PUBLISH, PUBREL, SUBSCRIBE

and UNSUBSCRIBE use any of these bits.

 Publish uses these bits, in order, for the DUP flag, the

QoS (2,1) and the Retain flag.

 PUBREL, SUBSCRIBE, and UNSUBSCRIBE use 0,0,1,0

for these bits. Any other values cause network

disconnects.

Capitalware's MQ Technical Conference v2.0.1.5

Variable Length Headers

 Each packet can have a variable length header to indicate

additional flags about the data.

 Details of the individual fields in these headers are best left to the

standards.

 The following packets don’t use variable length headers: PINGREQ,

PINGRESP, and DISCONNECT.

 The CONNECT packet has the most complex set of flags in the

variable length header – indicating everything from the protocol

name (“MQTT” in UTF-8) to indicators of what the contents of the

payload include. The full set of fields is : Protocol Name, Protocol

Level, Connect Flags: {User Name, Password, Will Retain, Will QoS,

Will Flag, Clean Session}, and Keep Alive.

Capitalware's MQ Technical Conference v2.0.1.5

MQTT Packet Payload

 The length of the MQTT packet is the bytes of the fixed

length header and then the value of the Remaining

Length bytes in that header.

 The Remaining Length can only use 4 bytes and can

only use 7 bits of those bytes. This limits the size of the

message to no more than 250MB (still bigger than MQ!)

 The following Packets have no payload : CONNACK,

PUBACK, PUBREC, PUBREL, PUBCOMP, UNSUBACK,

PINGREQ, PINGRESP and DISCONNECT (Disconnect

doesn’t even have a reply message)

Capitalware's MQ Technical Conference v2.0.1.5

Questions & Answers

Capitalware's MQ Technical Conference v2.0.1.5

