
Capitalware's MQ Technical Conference v2.0.1.6

Authentication in MQ

Morag Hughson

morag@mqgem.com

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Authentication in MQ - Abstract
� Over the last few releases of IBM MQ, there have been a number of security

features added that provide authentication features. This session illustrates all

those features and how they work together. This session will cover the use of

SSL/TLS on channels (and some changes in this area in MQ V8); the security exit

facility which is still available although some of the common uses for it are now built

into the MQ product; the use of CHLAUTH rules (added in MQ V7.1 and enhanced

in MQ V8) and the MQ V8 feature Connection Authentication, which allows the

validation of user ID and password from an application at connect time.

Capitalware's MQ Technical Conference v2.0.1.6

Agenda
� Authentication - Channels

� SSL/TLS on MQ Channels

� Some V8 updates

� Channel Authentication (CHLAUTH)

� Introduced in V7.1

� Some V8 updates

� Security Exits

� Authentication - Applications
� O/S Logon

� Useful for locally bound applications

� Not to be relied upon for client applications!

� Connection Authentication using MQCONNX

� Introduced in V8

� Tying Authentication to Authorization

� How do they all fit together?

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Agenda
� We’ll take a little time to remind ourselves what each of these features is and how it

works. Then we’ll look at how these features work together and how the

authentication features ultimately can set the user ID used for authorization checks.

Capitalware's MQ Technical Conference v2.0.1.6

QM1 QM2

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

Application
Queues

Authentication - Channels

MCA

Channels

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Authentication – Channels – Notes
� First we shall look at authentication of remote partners, whether clients or remote queue

managers, which connect into your system.
� It is very important to ensure that you have good authentication mechanisms in place for any

remote partners. You must know that the connections coming into your queue manager can
be trusted.

Identification
� When an MQ application connects remotely to a queue manager it can assert an identity

across the network connection to the queue manager. This identity could be anything and so
should not be trusted without some form of queue manager side authentication.

Authentication
� Authentication is the way in which a channel ensures that the other end of the channel is who

they say they are. Channels can make use of SSL/TLS to authenticate a digital certificate sent
by the partner. In WebSphere MQ V7.1 Channel Authentication Records can be used to do
many of the jobs a security exit can do, such as allowing or blocking a channel based on IP
address, Certificate DN, Remote Queue Manager Name or Client User ID.

� Once a remote partner has been authenticated, Channel Authentication Records or a security
exit can also set the identity that this channel will use for all access control checks.

Confidentiality
� In an ideal environment all channels would be running inside the enterprise with good physical

security. However, often there will be cross enterprise channels or channels running on
networks where physical security can not be guaranteed. In those cases it is worth
considering adding some level of encryption to the data flow. This can either be done in
channel exits or by using SSL/TLS on the channels.

Capitalware's MQ Technical Conference v2.0.1.6

Channels – Authentication Facilities
� Transport Layer Security (SSL/TLS)

� Using Digital Certificates

� Channel Authentication Records
� Introduced in WebSphere MQ V7.1

� Updated in IBM MQ V8

� Security Exits
� Many Vendor exits available

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Channels – Authentication Facilities – Notes

� Over the next few pages we are going to introduce each of the following facilities

which allow you to provide some authentication for your client or MCA channels.

The strength of the authentication provided varies by each facility so the choice of

facility should take that into account when making a business decision as to the

level of authentication required.

Capitalware's MQ Technical Conference v2.0.1.6

SSLCIPH(RC4_MD5_US)

SSLRKEYC(999 999 999)

SSLCAUTH(REQUIRED)

SSLPEER('O=IBM')

SSLCERTI('CN=MQ CA')

SSLKEYR(QM1KEYRING)

CERTLABL(‘QM1Cert')

SSLCRLNL(REVOKE.NL)

Using SSL/TLS with WebSphere MQ
� Get your certificates

for Authentication
� Digital Certificates
� Asymmetric Keys

� Put your certificates in a place
that MQ can use
� Label them how you wish

� Decide if you need revocation
status checking (LDAP or OCSP)

� Decide if you need cipher spec
restriction (FIPS or SUITEB)

� Configure your channels to
use SSL/TLS for Confidentiality
� Symmetric Key

Cryptography

� … and Data Integrity
� Hash Function

� WebSphere MQ SSL Wizard (MO04)

Plaintext

h
Hash

Function

Alice's Digital

Certificate

CA Sig

A
Private

A

Public

Revoked

Alice SSLFIPS(NO)

SUITEB(NONE)

New in

V8

New in

V8

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Using SSL/TLS with WebSphere MQ – Notes

� The three main issues that Transport Level Security (SSL/TLS) addresses are Confidentiality, Data Integrity
and Authentication. The techniques that it uses to address these issues are

– For Confidentiality, we have symmetric key cryptography with the capability to periodically reset the secret key;

– For Data Integrity we have the hash function; and

– For Authentication we have digital certificates, asymmetric keys and certificate revocation lists.

� WebSphere MQ makes use of these techniques to address these security issues.

� Digital Certificates and Public Keys are found in a key repository which can be specified to WebSphere MQ
(SSLKEYR on the queue manager). The certificates have a local label which can either be specified using
CERTLABL (on the queue manager or on a per channel basis) or will default to ibmwebspheremq<qmgr-
name>. CERTLABL was added

� One can specify which symmetric key cryptography algorithm and which hash function to use by providing
WebSphere MQ with a SSLCipherSpec (SSLCIPH on a channel). The secret key can be periodically reset
by setting an appropriate number of bytes in SSLKeyResetCount (SSLRKEYC on the queue manager).

� The set of cipher specs to be used by the queue manager can be restricted to a set that are compliant to the
FIPS 140-2 standard (SSLFIPS on the queue manager) available on both distributed and in WebSphere MQ
V7.1 on z/OS; or to the Suite-B standard (SUITEB on the queue manager) available on the distributed
platforms in WebSphere MQ V7.1

� We can choose to authenticate both ends of the connection or only the SSL Server end of the connection
(SSLCAUTH on a channel). Also we can make choose to do certificate revocation status checking using
either LDAP CRLs or OCSP (SSLCRLNL on the queue manager).

� We can also check that we are talking to the partner we expect to be talking to by setting a CHLAUTH rule
to check the Subjects DN from the certificate (SSLPEER) and the Issuer’s DN (SSLCERTI). SSLCERTI was
added in IBM MQ V8.

Capitalware's MQ Technical Conference v2.0.1.6

QMgr4B

Business Partners with different CA requirements

BP A BP B

QMgr4A QMgr

QM's Digital

Certificate from

Entrust

CA
Sig

QM's Digital

Certificate from

VeriSign

CA
Sig ?

Only one certificate

to identify the queue

manager

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Business Partners with different CA requirements – Notes

� Imagine the situation where your company has need to communicate securely with

two difference business partners. These business partners each have a different

requirement about the Certificate Authority (CA) who signs the certificates that they

are happy to accept. In our example, Business Partner A will only accept

certificates signed by VeriSign, whereas Business Partner B will only accept

certificates signed by Entrust.

� In order for your company to be able to communicate with both of these Business

Partners, you need a certificate that is signed by VeriSign (to communicate with

Business Partner A) and a certificate that is signed by Entrust (to communicate with

Business Partner B). However, since a queue manager can only have one

certificate, with releases prior to V8 of WebSphere MQ, you were forced into having

two queue managers, one using each certificate. This is less than ideal.

� N.B. Some people also solve this issue by using an MQIPT in front of the queue

manager.

Capitalware's MQ Technical Conference v2.0.1.6

Certificate per Channel

BP A BP B

QMgr

QM's Digital

Certificate from

Entrust

CA
Sig

QM's Digital

Certificate from

VeriSign

CA
Sig

QM's Digital

Certificate

CA
Sig

ALTER CHANNEL(BPB.TO.ME)

CHLTYPE(RCVR)

CERTLABL(‘EntrustCert’)

ALTER CHANNEL(TO.BPB)

CHLTYPE(SDR)

CERTLABL(‘EntrustCert’)

ALTER CHANNEL(BPA.TO.ME)

CHLTYPE(RCVR)

CERTLABL(‘VeriSignCert’)

ALTER CHANNEL(TO.BPA)

CHLTYPE(SDR)

CERTLABL(‘VeriSignCert’)

New in

V8

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Certificate per Channel – Notes
� What is required is the ability to indicate that this particular channel should use a

different certificate than other channels.

� This is achieved in WebSphere MQ V8 with an attribute on a channel, CERTLABL,

which can either be blank – which means use whatever the queue manager overall

is configured to use, or if provided, means that this channel should use the

specifically named certificate.

� For reasons explained a little later on, we only allow you to specify a non blank

CERTLABL at definition time if you are using a TLS cipherspec.

Capitalware's MQ Technical Conference v2.0.1.6

Why hasn’t IBM MQ always done this?

QM1 (Local) QM2 (Remote)

MCA MCA

Channel

Transmission
Queue

Application
QueuesMessage

Message

SSL/TLS Handshake Flows

SSL/TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

QM2's Digital

Certificate

CA
Sig

QM1's Digital

Certificate

CA
Sig

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Why hasn’t IBM MQ always done this? – Notes

� The SSL/TLS handshake is done as the first thing on a channel, before any of the

internal channel FAP flows. If you have ever pointed a web-browser with a https://

address at your MQ listener port, you’ll know this. This means that the certificate is

authenticated long before the channel name at the receiver end is known. This

made it impossible to choose a certificate to be used for a receiver based on the

channel name. The best that could have been done would have been to provide a

different certificate per port number and have several different listeners running,

each presenting a different certificate.

� Over time however, as SSL/TLS is used by more and more consolidated servers,

think HTTP server farms and large application servers, it has become necessary to

be able to separate the traffic that is going to a single server into differently

authenticated groups.

� Enhancements to the TLS protocol allow the provision of information as part of the

TLS handshake which can then be used to determine which certificate should be

used for this particular connection.

� This enhancement is known as Server Name Indication (SNI).

Capitalware's MQ Technical Conference v2.0.1.6

Server Name Indication

Website A’s

Digital Certificate

CA Sig

Website B's

Digital Certificate

CA Sig

Website C's

Digital Certificate

CA Sig

website-a.com

website-b.com

website-c.com

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Server Name Indication – Notes
� Wikipedia provides a succinct summary of what Server Name Indication (SNI) is.

� The example on this page shows a use case where SNI would be used. We have

three websites which each have their own certificate. When they were hosted on

individual servers, then this was no problem, each web server has one certificate.

� Now let’s think about what happens if we decide to consolidate those web sites

onto a single server. How can we maintain the certificate correlation with the

website. SNI allows this to be able to happen by providing a place in the TLS

handshake for additional data to be flowed. This additional data is the hostname the

browser was trying to connect to, thus allowing the certificate to be chosen based

off that hostname.

Capitalware's MQ Technical Conference v2.0.1.6

Using Server Name Indication (SNI) with a channel name

� Both ends of the channel must be at the new
release

� Only TLS can be used, no SSL
� Only certain cipherspecs will be able to supply this

behaviour

� JSSE doesn’t yet support SNI
� So Java client can’t make use of it

� If old sender / client / cipherspec used
� IBM MQ only detects that it needed to supply a different

certificate after completion of the handshake and so will
fail the connection at that point (if it hasn’t already failed
due to using the wrong certificate!)

QM1 (Local) QM2 (Remote)

MCA MCA

Channel

Transmission
Queue

Application
QueuesMessage

Message

TLS Handshake Flows (inc. Chl Name)

TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

Chl: TO.QM2's

Digital Certificate

CA
Sig

QM1’s Digital

Certificate

CA
Sig

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Using Server Name Indication (SNI) with a channel name

� WebSphere MQ V8 uses SNI to provide a channel name instead of a hostname.

The sender (or client) end of the channel has been enhanced to put the channel

name into the Server Name Indication (SNI) hint for the TLS Handshake.

� The receiver (or server-conn) end of the channel has been enhanced to retrieve the

channel name from the SNI hint and select the appropriate certificate based on that

information. It is worth nothing that the channel name is now flowing in the clear,

although in a tamper-proof manner.

� There are some restrictions to using this feature as listed.

� A back-level queue manager upon receiving a TLS handshake containing SNI, will

just ignore what is in the SNI (as it is defined as an optional extension) and use the

normal certificate.

� If there are no channels defined on the queue manager with anything in the

CERTLABL field, then SNI will not be used by the receiving end. This will leave the

behaviour the same as prior releases for certificate selection.

Capitalware's MQ Technical Conference v2.0.1.6

Channel Authentication Records
� Set rules to control how inbound connections are treated

� Inbound Clients
� Inbound QMgr to QMgr channels
� Other rogue connections causing FDCs

� Rules can be set to
� Allow a connection
� Allow a connection and assign an MCAUSER
� Block a connection
� Ban privileged access
� Provide multiple positive or negative SSL/TLS Distinguished Name matching
� Mandate user ID & password checking

� Rules can use any of the following identifying
characteristics of the inbound connection
� IP Address
� Hostnames
� SSL/TLS Subject’s Distinguished Name
� SSL/TLS Issuer’s Distinguished Name
� Client asserted user ID
� Remote queue manager name

Red items:

New in V8

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Channel Authentication Records – Notes
� Channel Authentication records allow you to define rules about how inbound

connections into the queue manager should be treated. Inbound connections might
be client channels or queue manager to queue manager channels. These rules can
specify whether connections are allowed or blocked. If the connection in question is
allowed, the rules can provide a user ID that the channel should run with or indicate
that the user ID provided by the channel (flowed from the client or defined on the
channel definition) is to be used.

� These rules can therefore be used to
– Set up appropriate identities for channels to use when they run against the queue manager

– Block unwanted connections

– Ban privileged users

� Which users are considered privileged users is slightly different depending on which
platform you are running your queue manager on. There is a special value
‘*MQADMIN’ which has been defined to mean “any user that would be privileged on
this platform”. This special value can be used in the rules that check against the
final user ID to be used by the channel – TYPE(USERLIST) rules – to ban any
connection that is about to run as a privileged user. This catches any blank user IDs
flowed from clients for example.

Capitalware's MQ Technical Conference v2.0.1.6

CHLAUTH – Configuration
� Create rules using

� MQSC: SET CHLAUTH

� PCF

� Pattern matching
� Channel Name/QMgr Name/Hostname

� Beginning, middle, end

� IP addresses (IPV4 or IPV6)

� SSL Peer Name (as today)

Starting MQSC for queue manager TEST1.

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) ADDRESS(‘*’) USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(BLOCKUSER) USERLIST(‘*MQADMIN’)

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) ADDRESS(‘9.20.1-3.*’) USERSRC(CHANNEL)

SET CHLAUTH(‘APP1.CHL*’) TYPE(ADDRESSMAP) ADDRESS(‘*.ibm.com’) USERSRC(CHANNEL)

SET CHLAUTH(‘*.ADMIN.*’) TYPE(SSLPEERMAP) SSLPEER(‘O=IBM,L=Hursley’) USERSRC(CHANNEL)

SET CHLAUTH(‘QM1.TO.QM2’) TYPE(QMGRMAP) QMNAME(QM1) USERSRC(MAP) MCAUSER(‘QM1USER’)

SET CHLAUTH(‘*.SVRCONN’) TYPE(USERMAP) CLNTUSER(‘mhughson’) MCAUSER(‘hughson@hursley’)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP) SSLPEER(‘O=IBM’) ADDRESS(‘9.*’) MCAUSER(‘hughson’)

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

CHLAUTH – Configuration – Notes

� Here we show some example rules illustrating the commands used for creating the

rules. These examples are in MQSC. There is also PCF, and this is used by the MQ

Explorer GUI.

� Some of these examples illustrate the pattern matching that can be applied to

channel names, IP addresses, Hostnames, SSL/TLS DNs and remote queue

manager names. Also we see all three types of rules, blocking channels –

USERSRC(NOACCESS); allowing channels to run with the user ID provided by the

channel – USERSRC(CHANNEL); and assigning a user ID to a channel –

USERSRC(MAP) MCAUSER(user-id). USERSRC(MAP) is the default so we also

see in another example that it does not need to be specified on the command.

Capitalware's MQ Technical Conference v2.0.1.6

Restricting the Mappings
� Rules matching on

� SSL Peer Name
� Remote QMgr Name
� Client User ID

� Can add IP address/Hostname

� Restrict where an SSL Certificate
can be used from
� Specific IP address/Hostname

� Restrict where a queue manager
or client user ID can come from
� Specific IP address/Hostname

Restrict

By

Mapped

S
S

L
 P

e
e
r

Q
M

 N
a

m
e

C
lie

n
t U

se
r

I
P

A
d

d
r
e
s
s
/H

o
s
tn

a
m

e

SSL Peer X X 8

QM Name 8

Client User 8

IP Address

SET CHLAUTH(*) TYPE(SSLPEERMAP)

SSLPEER(‘L=”Hursley”’) MCAUSER(HURUSER) ADDRESS(‘9.20.*’)

SET CHLAUTH(*) TYPE(QMGRMAP)

QMNAME(CLUSQM*) MCAUSER(CLUSUSR) ADDRESS(‘*.ibm.com’)

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Restricting the Mappings - Notes
� When mapping from an SSL certificate DN, you may also want to ensure that

certificate is being used from the correct IP address, mitigating what might happen

if a certificate is stolen.

� When mapping from a queue manager name, you may also want to ensure that the

queue manager is running on the correct IP address to ensure it is not a rogue

queue manager with the same name as one in your cluster for example.

� We could imagine using the remote queue manager name or the client user ID as a

restrictor on an SSL Peer rule, however feedback from EAP did not suggest anyone

needed it so it was not implemented. For the most part, attributes within the X509

DN will contain the same information for most practical uses. For example

CN=<Queue Manager Name>.

Capitalware's MQ Technical Conference v2.0.1.6

Fully Qualifying your Peer Name rules
� Key Repository contains

� All CA certs we trust

� Multiple CAs means possible DN clashes

� External CAs
� Checks and balances

� Unlikely to have DN clashes

� Internal CAs
� Less rigid

� May give out certs exactly as requested

� May end up with clashes

� Could solved in a Security Exit
� MQCD.SSLPeerNamePtr

� MQCXP.SSLRemCertIssNamePtr

� CHLAUTH rules extended
� Check Subject’s DN (SSLPEER)

� Check Issuer’s DN (SSLCERTI)

SET CHLAUTH(BPA.TO.ME)

TYPE(SSLPEERMAP)

SSLPEER(‘O=IBM’)

MCAUSER(BPAUSR)

SSLCERTI(‘CN=External’)

SSLKEYR

CA Certificate

External

CA Certificate

Internal

New in

V8

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Fully Qualifying your Peer Name rules – Notes

� As we just saw, you can add IP address or hostname restrictors to many of the rule types to
further qualify the matching that happens.

� In the case of a Peer name map, you can fully qualify the certificate matching by providing
both the Subject’s DN (SSLPEER) and the Issuer’s DN (SSLCERTI) on a rule. SSLCERTI is
new in MQ V8.

� This is especially important if you have more than one Certificate Authority (CA) certificate in
your key repository which you may be more likely to do with the introduction of multiple
certificates for one queue manager which was a new feature in MQ V8.

� However, since we now accept certificates which come from two different Certificate Authorities
(CAs) we can run foul of another issue.

� One of the benefits of Externals CAs is that they guarantee not to issue the certificates with the
same DN as another certificate that they have already issued. However, an internal CA may not be
so diligent. Some internal CAs may simply accept what the user requests as their DN, so our rogue
could obtain a certificate with non-unique DN from such a CA.

� The only way to solve this issue in the past was to use a security exit, since security exits are
presented with both the issuer’s and subject’s Distinguished Name. However, we are trying to get
away from people having to write exits for common security issues, and this very much falls into that
category.

� In MQ V8, we can solve this issue by using a new attribute on CHLAUTH rules which matches the
issuer’s DN – SSLCERTI. Our CHLAUTH rules can now be fully qualified to use both SSLPEER (the
subject’s DN) and SSLCERTI (the issuer’s DN).

Capitalware's MQ Technical Conference v2.0.1.6

CHLAUTH – Precedence

Precedence matching
� Most specific rule is matched

� Identifying attributes are
� Channel Name

� SSL Peer Name pattern

� Precedence defined for partial patterns

� Remote queue manager name pattern

(MCA channels)

� Client asserted user ID (MQI channels)

� No pattern matching on this

� IP address pattern

� Hostname pattern (least specific)

� Within SSL Peer Name matching
� Most specific substring is

matched

Chl: MY.CHANNEL

IP: 9.20.1.123

DN: CN=Morag Hughson.O=IBM UK

UID: mhughson

Order Identity mechanism Notes

0 Channel Name

1 SSL Subject’s Distinguished

Name

2 SSL Issuer’s Distinguished Name

3= Client asserted User ID Clearly several different user IDs can be

running on the same IP address.

3= Queue Manager Name Clearly several different queue managers

can be running on the same IP address

5 IP address

6 Hostname One IP address can have multiple

hostnames

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

CHLAUTH – Precedence – Notes

� When there is more than one rule that could match the inbound connection in

question, then we define which rule will actually be used by defining the precedence

order of what is the most specific match. The table shows that SSL Peer Names are

considered a more specific match than a queue manager name or client user ID

(because there is much more detailed information in an SSL Peer Name); and

Hostnames are considered the least specific since clearly more than one queue

manager or client can be connecting from the same IP address/Hostname.

Hostnames are even less specific than IP addresses because an IP address can

have multiple hostnames.

Capitalware's MQ Technical Conference v2.0.1.6

SSL DN Precedence Mapping Example

CN=Morag Hughson.OU=MQ Devt.

O=IBM UK.L=Hursley.C=UK

SET CHLAUTH(*) TYPE(SSLPEERMAP) SSLPEER(‘OU=“MQ Devt”’)

MCAUSER(MQUSER)

SET CHLAUTH(*) TYPE(SSLPEERMAP) SSLPEER(‘L=“Hursley”’)

MCAUSER(HURUSER)

Order DN Substring Name

1 CN= Common name

2 T= Title

3 OU= Organizational unit

4 O= Organization

5 L= Locality

6 ST=, SP=, S= State or province name

7 C= Country

Certificate

CN=Morag

Hughson

Order DN Substring Name

1 CN= Common name

2 T= Title

3 OU= Organizational unit

4 O= Organization

5 L= Locality

6 ST=, SP=, S= State or province name

7 C= Country

Most

Specific

Match

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

SSL DN Precedence Mapping Example – Notes

� Not only do we define the order of precedence between the various different

identifying characteristics of an inbound connection, we also must do a similar job

for SSL Peer Name.

� Here is an example to illustrate what happens when two partial patterns could both

match an inbound Distinguished Name (DN) from a client.

� We want the most specific match to be used, so we have defined a precedent order

of what we mean by the most specific.

� The table shown here that defines the precedence order is a subset of the contents

of an SSL Peer Name in WebSphere MQ V7.1. It suffices to describe this example.

For the full table of SSL Peer Name attributes, visit Knowledge Centre here:-
http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.sec.doc/q009860_.htm

Capitalware's MQ Technical Conference v2.0.1.6

SET CHLAUTH(*) TYPE(ADDRESSMAP) ADDRESS(‘*’) USERSRC(NOACCESS) WARN(YES)

SET CHLAUTH(BPCHL.*) TYPE(SSLPEERMAP) SSLPEER(‘O=Bank of Shetland’) MCAUSER(BANK123)

SET CHLAUTH(BPCHL.*) TYPE(SSLPEERMAP) SSLPEER(‘O=Bank of Orkney’) MCAUSER(BANK456)

SET CHLAUTH(SYSTEM.ADMIN.SVRCONN) TYPE(ADDRESSMAP)

ADDRESS(‘9.20.1-30.*’) MCAUSER(ADMUSER)

SET CHLAUTH(TO.CLUS.*) TYPE(QMGRMAP)

QMNAME(CLUSQM*) MCAUSER(CLUSUSR) ADDRESS(‘9.30.*’)

Channel Authentication – How should I use this?

“We must make sure our system is completely locked down”
“Our Business Partners must all connect using SSL, so we will map

their access from the certificate DNs”

“Our Administrators connect in using MQ Explorer, but don’t use

SSL. We will map their access by IP Address”

“Our internal cluster doesn’t use SSL, but we must ensure only the

correct queue managers can connect into the cluster”

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

CHLAUTH – How should I use this? - Notes

� Here is an example of how we expect this to be used.

� Our business requires that “We must make sure our system is completely locked

down”. So we start off with a rule that blocks everyone. Therefore anyone that

doesn’t match a more specific rule will not be allowed in.

� Our business requires that “Our Business Partners must all connect using SSL, so

we will map their access from the certificate DNs”. So we have some rules that map

specific DNs of our Business Partners to specific user IDs. Previously you might

have done this by having separate channel definitions for each BP, now if you wish

they can come into the same receiver definition.

� Our business requires that “Our Administrators connect in using MQ Explorer, but

don’t use SSL. We will map their access by IP Address”. So we have a rule that

gives them all a single administrative access user ID based on a range of IP

addresses.

� Our business requires that “Our internal cluster doesn’t use SSL, but we must

ensure only the correct queue managers can connect into the cluster”. So we have

a rule that gives access to the correctly named queue managers but only if they

come from a recognised IP address.

Capitalware's MQ Technical Conference v2.0.1.6

ChannelQM1 QM2

MCA MCA
Security Exchange

Transmission

Queue
Application

Queue

Security

Exit

Security

Exit

Security Exits
� Channel 'Gate Keeper'

� Indefinite exchange of data between exits

� No defined format

� No communications knowledge required

� Can end channel

� Can set MCAUSER

� Many traditional uses now covered by recent product features
� Always there for niche use cases

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Security Exits – Notes
� One of the problems with authentication is that the industry could not decide how it

should be done. Different environments suit different strategies and require different
levels of security. The most common approaches seem to be third party
authenticators such as Kerberos, SSL/TLS and Public/Private key encryption.
Originally, WebSphere MQ decided that the most flexible approach was to make
authentication a plug in service. That way each channel could have exactly the level
of authentication it needed.

� Authentication can now be done without the use of a security exit, by using SSL
and digital certificates and/or by using Channel Authentication Records.

� Security exits are the first channel exits to gain control of the conversation. They
can exchange free format data with their remote partner, exchanging passwords,
public keys etc to authenticate the remote partners request.

� No knowledge of communications is required. The exit merely passes a buffer of
data back to the MCA who then transmits it to the partner machine. The data is
received by the other MCA and then passed to the other security exit.

� If the security exit agrees with the authentication then it can change the default
userid used for access control, known as the MCAUserid.

� A number of security exits are shipped as samples with the product. There are also
some available for download from the supportpac web site. A number of third party
products are also available.

Capitalware's MQ Technical Conference v2.0.1.6

QM1 QM2

MCA

Channels

Transmission
Queue

Application
Queues

Transmission
Queue

Application
Queues

Authentication – Applications

Local

MQ Application

Client

MQ Application

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Authentication – Applications – Notes
� Now we shall look at authentication of applications, whether client connected or

locally bound, which connect into your system.

� It is very important to ensure that you have good authentication mechanisms in

place for any application. You must know that the connections made to your queue

manager can be trusted.

� These applications may be business applications putting and getting messages

from application queues, or administrative applications, issuing commands to the

queue manager.

Capitalware's MQ Technical Conference v2.0.1.6

Applications – Authentication Facilities
� O/S Logon

� Useful for locally bound applications

� Not to be relied upon for client applications!

� Use client channel authentication

� MQCONNX
� Connection Security Parameters

� User ID and Password

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Applications – Authentication Facilities – Notes

� Over the next few pages we are going to introduce each of the following facilities

which allow you to provide some authentication for your client or locally bound

application.

Identification

� When an MQ application connects to the queue manager the O/S is interrogated to

discover the user ID that it is running under. This is used as the identity. We can

see this user ID in the context information of a message.

Authentication

� A locally bound MQ application is running against MQ under an user ID that the O/S

has provided and which has been logged onto prior to running the application. This

may be enough authentication for a locally bound application for your business

purposes, or you may wish more.

Capitalware's MQ Technical Conference v2.0.1.6

Connection Authentication
� MQCSP structure

� Connection Security Parameters
� User ID and password

� MQCNO structure
� Connection Options

� WebSphere MQ V6
� Passed to OAM (Dist only)
� Also passed to Security Exit

� Both z/OS and Distributed

� MQXR_SEC_PARMS

� WebSphere MQ V8
� Acted upon by the queue manager (all

platforms)

MQCNO cno = {MQCNO_DEFAULT};

cno.Version = MQCNO_VERSION_5;

cno.SecurityParmsPtr = &csp;

MQCONNX(QMName,

&cno,
&hConn,

&CompCode,

&Reason);

MQCSP csp = {MQCSP_DEFAULT};

csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;
csp.CSPUserIdPtr = "hughson";
csp.CSPUserIdLength = 7; /* Max: MQ_CLIENT_USER_ID_LENGTH */
csp.CSPPasswordPtr = "passw0rd";
csp.CSPPasswordLength = 8; /* Max: MQ_CSP_PASSWORD_LENGTH */

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Authentication - MQCONNX - Notes
� On MQCONNX an application can provide a user ID and password (in the

Connection Security Parameters (MQCSP) structure in the MQCNO), which are

passed to the queue manager at V8 to be checked (depending on whether the

queue manager is configured to do this).

� The MQCSP structure was available since WebSphere MQ V6, but a security exit

or custom OAM needed to be written to check the password. Now this is built into

the queue manager in V8.

Capitalware's MQ Technical Conference v2.0.1.6

CHCK…

NONE

OPTIONAL

REQUIRED

REQDADM

Configuration

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Inter process

Communications

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx)

CHCKLOCL(OPTIONAL)

CHCKCLNT(REQUIRED)

FAILDLAY(1) ADOPTCTX(YES)

REFRESH SECURITY TYPE(CONNAUTH)
MQRC_NOT_AUTHORIZED (2035)

MQRC_NONE (0)

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Configuration - Notes (1)
� We’ll start with the basic configuration side of things. How do I turn on this connection

authentication feature on the queue manager.

� On the queue manager object there is a new attribute called CONNAUTH (short for connection

authentication) which points to an object name. The object name it refers to is an

authentication information object – one of two new types. There are two existing types of

authentication information objects from earlier releases of WebSphere MQ, these original two

types cannot be used in the CONNAUTH field.

� The two new types are similar in quite a few of the basic attributes so we will look at those first.

We’ll come back to more of the attributes later. We show here a new authentication information

object which has two fields to turn on user ID and password checking, CHCKLOCL (Check

Local connections) and CHCKCLNT (Check Client connections). Changes to the configuration

of this must be refreshed for the queue manager to pick them up.

� Both of these fields have the same set of attributes, allowing for a strictness of checking. You

can switch it off entirely with NONE; set it to OPTIONAL to ensure that if a user ID and

password are provided by an application then they must be a valid pair, but that it is not

mandatory to provide them – a useful migration setting perhaps; set it to REQUIRED to

mandate that all applications provide a user ID and password; and, only on Distributed,

REQDADM which says that privileged users must supply a valid user ID and password, but

non-privileged users are treated as per the OPTIONAL setting.

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Configuration - Notes (2)
� Any application that does not supply a user ID and password when required to, or

supplies an incorrect combination even when it is optional will be told 2035

(MQRC_NOT_AUTHORIZED). N.B. When password checking is turned off using

NONE – then invalid passwords will not be detected.

� Any failed authentications will be held for the number of seconds in the FAILDLAY

attribute before the error is returned to the application – just some protection

against a busy loop from an application repeatedly connecting.

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Configuration - Notes (3)
� So we have seen that we can configure our queue manager to mandate user IDs and

passwords are provided by certain applications. We know that the user ID that the
application is running under may not be the same user ID that was presented by the
application along with a password. So what is the relationship of these user IDs to the
ones used for the authorization checks when the application, for example, opens a
queue for output.

� There are two choices, in fact, controlled by an attribute on the authentication
information object – ADOPTCTX.

� You can choose to have applications provide a user ID and password for the purposes
of authenticating them at connection time, but then have them continue to use the user
ID that they are running under for authorization checks. This may be a useful stepping
stone when migrating, or even a desirable mode to run in, perhaps with client
connections, because authorization checks are being done using an assigned
MCAUSER based on IP address or SSL/TLS certificate information.

� Alternatively, you can choose the applications to have all subsequent authorization
checks made under the user ID that you authenticated by password by selecting to
adopt the context as the applications context for the rest of the life of the connection.

� If the user ID presented for authentication by password is the same user ID that the
application is also running under, then of course this setting has no effect.

Capitalware's MQ Technical Conference v2.0.1.6

User Repositories

QMgr

O/S User
Repository
(z/OS + Dist)

LDAP Server (Dist only)

DEFINE AUTHINFO(USE.OS) AUTHTYPE(IDPWOS)

DEFINE AUTHINFO(USE.LDAP) AUTHTYPE(IDPWLDAP)

CONNAME(‘ldap1(389),ldap2(389)’)

LDAPUSER(‘CN=QMGR1’)

LDAPPWD(‘passw0rd’) SECCOMM(YES)

MQCONNX
User1 + pwd1

Application (User2)

On z/OS passphrases

can be used

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

User Repositories – Notes
� So far we have spoken about user ID and password authentication without mentioning what is

actually doing the authentication. We’ve also shown that there is a new type of authentication
information object without showing you the object type. Here we introduce two new object
types of authentication information objects.

� The first type is used to indicate that the queue manager is going to use the local O/S to
authentication the user ID and password. This type is IDPWOS. This includes the use of
password phrases on z/OS

� The second type is used to indicate that the queue manager is going to use an LDAP server
to authenticate the user ID and password. This type is IDPWLDAP and is not applicable on
z/OS.

� Only one type can be chosen for the queue manager to use by naming the appropriate
authentication information object in the queue manager’s CONNAUTH attribute.

� We have already covered everything there is to say about the configuration of the O/S as the
user repository as the common attributes are all there is for the O/S. There is more to say
about the LDAP server as an option though.

� Some of the LDAP server configuration attributes are probably fairly obvious. The CONNAME
is how the queue manager knows where the LDAP server is, and SECCOMM controls
whether connectivity to the LDAP server will be done using SSL/TLS or not. The LDAPUSER
and LDAPPWD attributes are how the queue manager binds to the LDAP server so that it can
look-up information about user records. It is likely this may be a public area of an LDAP
server, so these attributes may not be needed.

� It is worth highlighting that the CONNAME field can be used to provide additional addresses to
connect to for the LDAP server in a comma-separated list. This can aid with redundancy if the
LDAP server does not provide such itself.

Capitalware's MQ Technical Conference v2.0.1.6

Local Bindings Authorization
Method Notes

User ID running the application process Authenticated when the user ID logged onto the

machine

User ID set by ADOPTCTX(YES) The queue manager wide setting to adopt the

password authenticated user ID as the user to be

used will over-ride the above.

MQCONNX
User1 + pwd1

Application (User2) QMgr

Inter process

Communications

Authority
Checks

Q1

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Local Bindings Authorization - Notes
� A locally bound application is one that is running on the same machine as the

queue manager and using Inter-process communication to connect and not sockets

and a channel. When an application is locally bound, the identity used for

authorization checks for all the resources that application wants to use is assigned

in one of the following ways:-

� The user ID that the process running the application is running under, will be used

for authorization checks. This user ID has been authenticated by means of that user

ID logging on to the O/S.

� Alternatively, if the application provided a user ID and password for authentication,

and the queue manager is configured to check these, there is a setting called

ADOPTCTX (Adopt Context) and if that is set to YES, the authentication user ID will

be user for authorization checks. This user ID may well be different to the one the

process running the application is running under.

Capitalware's MQ Technical Conference v2.0.1.6

Client Bindings Authorization
Method Notes

Client machine user ID flowed to

server

This will be over-ridden by anything else. Rarely do you want

to trust an unauthenticated client side user ID.

MCAUSER set on SVRCONN

channel definition

A handy trick to ensure that the client flowed ID is never used

is to define the MCAUSER as ‘rubbish’ and then anything that

is not set appropriately by one of the next methods cannot

connect.

MCAUSER set by ADOPTCTX(YES) The queue manager wide setting to adopt the password

authenticated user ID as the MCAUSER will over-ride either

of the above.

MCAUSER set by CHLAUTH rule To allow more granular control of MCAUSER setting, rather

than relying on the above queue manager wide setting, you

can of course use CHLAUTH rules

MCAUSER set by Security Exit Although CHLAUTH gets the final say on whether a

connection is blocked (security exit not called in that case),

the security exit does get called with the MCAUSER

CHLAUTH has decided upon, and can change it.

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Client Bindings Authorization - Notes
� A client bound application is one that is connecting to the queue manager using a

channel and therefore a socket. When an application is running as a client, the

identity used for authorization checks for all the resources that application wants to

use is assigned in one of the ways shown in the table.

� There are numerous ways that the running user can be set for a SVRCONN

channel, i.e. the user which is representing the client application when it is running

on the queue manager machine. The ADOPTCTX(YES|NO) attribute that we just

saw is yet another one. How do all these different ways of setting the MCAUSER on

the SVRCONN interact.

� There is an order of events and certain ways of setting the MCAUSER over-ride

others. The table shows the order.

Capitalware's MQ Technical Conference v2.0.1.6

MQ Client Application (CLNTUSR)

Security Scale - None!!!

� Client side user is used without any authentication at all
� So client machine can choose to assert anything it wants

� Simple mitigation - add defined MCAUSER of an unknown ID to block this off
� …. and pick something even just slightly higher on the scale!

QM1

MCA MCA

Client Channel

Application
Queues

Client process user ID sent

MQCONN

Channel MCAUSER = CLNTUSR

User Data (MQPUT)

User Data (MQGET)

MQOPEN

MQPUT

MQOPEN

MQGET

Capitalware's MQ Technical Conference v2.0.1.6

MQ Client Application (CLNTUSR)

Security Scale - Low

QM1

MCA MCA

Client Channel

Application
Queues

Client process user ID sent

MQCONN

Channel MCAUSER =

CHLAUTH Rules

SET CHLAUTH(*) TYPE(ADDRESSMAP)

ADDRESS('9.20.21.22')

MCAUSER('IBMUSER')

� Simple IP address filtering
� Not really authentication

� Better than nothing?

CLNTUSR

User Data (MQPUT)

User Data (MQGET)

MQOPEN

MQPUT

MQOPEN

MQGET

IBMUSER

IP address is

9.20.21.22

Capitalware's MQ Technical Conference v2.0.1.6

MQ Client Application (CLNTUSR)

Security Scale - Medium

QM1

MCA MCA

Client Channel

Application
Queues

Client process user ID sent

MQCSP User ID and Password

MQCONNX
(with MQCSP)
->USR123

Channel MCAUSER =

QMgr Settings

CONNAUTH('USE.PW')

'USE.PW' Settings

AUTHTYPE(IDPWOS)

CHCKCLNT(REQUIRED)

ADOPTCTX(YES)

CHLAUTH Rules

SET CHLAUTH(*) TYPE(ADDRESSMAP)

ADDRESS('9.20.21.22')

USERSRC(CHANNEL)

� User ID & Password checking

� With IP address filtering
� For an extra level of proof

CLNTUSRUSR123

User Data (MQPUT)

User Data (MQGET)

MQOPEN

MQPUT

MQOPEN

MQGET

Capitalware's MQ Technical Conference v2.0.1.6

MQ Client Application (CLNTUSR)

Security Scale - High

QM1

MCA MCA

Client Channel

Application
QueuesUser Data (MQPUT)

User Data (MQGET)

SSL/TLS Handshake Flows

SSL/TLS Handshake Flows

Client process user ID sent

QM1's Digital

Certificate

CA Sig

Client's Digital

Certificate

CA Sig

MQCONN

MQOPEN

MQPUT

MQOPEN

MQGET

Channel MCAUSER =

QMgr Settings

SSLKEYR(QM1KEYRING)

CERTLABL('QM1Cert')

CHLAUTH Rules

SET CHLAUTH(*) TYPE(SSLPEERMAP)

SSLPEER('O=IBM') SSLCERTI('CN=MQ CA')

ADDRESS('9.20.21.22')

MCAUSER('IBMUSER')

CLNTUSRIBMUSER

� Digital Certificate for Authentication
� Set MCAUSER based on DN

� Fully qualified DN checking

� Address restrictor for extra proof

IP address is

9.20.21.22

Capitalware's MQ Technical Conference v2.0.1.6

MQ Client Application (CLNTUSR)

Security Scale - Full

QM1

MCA MCA

Client Channel

Application
QueuesUser Data (MQPUT)

User Data (MQGET)

SSL/TLS Handshake Flows

SSL/TLS Handshake Flows

Client process user ID sent

MQCSP User ID and Password

QM1's Digital

Certificate

CA
Sig

Client's Digital

Certificate

CA
Sig

MQCONNX
(with MQCSP)
->USR123

MQOPEN

MQPUT

MQOPEN

MQGET

Channel MCAUSER =

QMgr Settings

SSLKEYR(QM1KEYRING)

CERTLABL('QM1Cert')

CHLAUTH Rules

SET CHLAUTH(*) TYPE(SSLPEERMAP)

SSLPEER('O=IBM') SSLCERTI('CN=MQ CA')

ADDRESS('9.20.21.22')

USERSRC(CHANNEL)

CLNTUSRUSR123

'USE.PW' Settings

AUTHTYPE(IDPWOS)

CHCKCLNT(REQUIRED)

ADOPTCTX(YES)CONNAUTH('USE.PW')

IP address is

9.20.21.22

� Certificates and Password Validation

� Set MCAUSER based on
� Either DN as before

� Or validated user ID

Capitalware's MQ Technical Conference v2.0.1.6

N

O

T

E

S

Putting it all together - Notes
� The process of authenticating a locally bound application is fairly simple as we saw

on earlier pages.

� However, the process of authenticating a client application has a number of

possible features. Here we show how they can all be used together if you wish, or

how you can dial down to only features that meet your business requirements.

Capitalware's MQ Technical Conference v2.0.1.6

MQ Security History and Summary
� IBM MQ provides a scale of authentication features

� From simple IP filtering …

� … through user ID and password validation …

� … to the strength of digital certificates with TLS channels

� Exit points remain for provision of exceptional needs

� Choose the feature(s)

that meets

your needs

1990s 2000s 2010s

Authorization
provided from

day 1

IBM MQSeries

Channel Exits

FIPS
on z

SSL on Channels

V1.1
V2

V5
V5.1

V5.3

V2.1

V5.2

V6

V7
V7.0.1

IBM

WebSphere MQ

SSL Refresh
OCSP

IBM MQ Advanced

Message Security

V7.1

V7.5

CHLAUTH
CONNAUTH

IBM MQ

AMS
Embedded

V8

CHLAUTH
hostnames

Certificate
LabelsCluster

Queue
ACLs

FIPS on
Dist

*SYSTEM
keystores
on IBM i

MQCSP
GSKit
on Win

SHA-2

V1

MQSC
Auth
cmds

