
MQ Technical Conference v2.0.1.7

Using Application Activity

Trace

Morag Hughson – morag@mqgem.com

MQGem Software

MQ Technical Conference v2.0.1.7

Agenda

� What is Application Activity Trace?

� How do you enable it?

� What do you get out?

� What can you do with it?

� Activity Trace on the MQ Appliance

� Using dynamic mode subscriptions

� Tools to view the output

MQ Technical Conference v2.0.1.7

What is Application Activity Trace?

Application
Queue

Manager

MQCONNX

MQOPEN

MQPUT

MQPUT

MQPUT

MQGET

MQPUT

MQCLOSE

MQDISC

MQ Technical Conference v2.0.1.7

N

O

T

E

S

What is Application Activity Trace? - Notes

� Application Activity Trace is a feature of IBM MQ that allows you to discover exactly

what the applications connected to your queue manager are doing. You can see the

object names that they open and the options they use on the various verbs they

call. You can find out about the size, persistence, priority and more, of your

messages. Please note, this feature is only available on the Distributed platforms.

� Application activity trace produces detailed information about the behaviour of

applications connected to a queue manager. It traces the behaviour of an

application and provides a detailed view of the parameters used by an application

as it interacts with IBM MQ resources. It also shows the sequence of MQI calls

issued by an application.

MQ Technical Conference v2.0.1.7

Configuring the trace

� Queue manager attributes

� Application Over-ride

� mqat.ini file

ALTER QMGR ACTVTRC(ON | OFF) ACTVCONO(ENABLED | DISABLED)

MQCNO cno = {MQCNO_DEFAULT};

cno.Options = MQCNO_ACTIVITY_TRACE_DISABLED;

MQCONNX(Qm,
&cno,
&hQm,
&CompCode,
&Reason);

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Configuring the trace - Notes

� To turn on Application Activity Trace, there is a control on the queue manager, the

ACTVTRC attribute which can be set to ON or OFF. If this attribute is set to ON it

does not mean that every application is traced however. You can further tune which

applications it applies to.

� Applications can opt out of Application Activity Trace. For example if you are writing

an application to collect and view the output of the trace, it is a good idea to opt-out

so that you don’t clutter up the trace you’re trying to collect with records of the

application reading the output! However, the queue manager has the final say

about whether applications are allowed to opt-out with the ACTVCONO attribute

which can be set to ENABLED or DISABLED.

� Should an application wish to opt-out, it uses the
MQCNO_ACTIVITY_TRACE_DISABLED option on MQCONNX to indicate so. There

is also a second connection option, MQCNO_ACTIVITY_TRACE_ENABLED for the

opposite effect.

� The detailed configuration of Application Activity Trace takes place in the
mqat.ini file which we’ll look at on the next page.

MQ Technical Conference v2.0.1.7

mqat.ini file

� One global stanza

� Several per application

stanzas
�Can over-ride global settings

�Most specific match on
ApplName applies

Global settings stanza
AllActivityTrace:
ActivityInterval=1
ActivityCount=100
TraceLevel=MEDIUM
TraceMessageData=0
StopOnGetTraceMsg=ON

ApplicationTrace:
ApplName=*
Trace=OFF

ApplicationTrace:
ApplName=amqsput*
Trace=ON
TraceLevel=HIGH
TraceMessageData=10000

MQ Technical Conference v2.0.1.7

N

O

T

E

S

mqat.ini file - Notes

� The mqat.ini file is location in the same place as the qm.ini file. It is a stanza

based file just like other MQ ini files such as mqs.ini and qm.ini.

� It can contain two different types of stanza. It can contain a single
AllActivityTrace stanza, and then multiple ApplicationTrace stanzas

allowing specific configuration for different application connections.
� Each of the ApplicationTrace stanzas provides configuration for how to treat

specific application connections. If required you can over-ride settings in the global

stanza to be different for specific application connections.
� You can use wildcards in the ApplName. Also, for those of you on Windows who

are used to ApplName fields containing part of the path, you only need to provide

the name from the last ‘\’ onwards. Where several stanza could match a particular

application, such as in this example, the most specific match is the one that applies.

If there is more than one matching, most specific, the last matching one will be

used.

MQ Technical Conference v2.0.1.7

Picking up mqat.ini changes

� Changes take effect when…

� The application next connects

� A change is made to the queue manager object
�Connected applications will pick up change

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Picking up mqat.ini changes - Notes

� When changes are made to the mqat.ini file, applications that subsequently

connect after the change was made will pick up and run using the settings in the

mqat.ini file. An application that is already running and will not make another

connection can also be forced to pick up the changes by making an alteration to the

queue manager object.

� This alteration doesn’t have to make an actual change to the queue manager,

changing an attribute to the value it is already set to will suffice. Some people like to
use DESCR for this.

MQ Technical Conference v2.0.1.7

Configuration Interaction
� ACTVTRC(ON) ACTVCONO(DISABLED) +

MQCNO_ACTIVITY_TRACE_DISABLED

� This connection still traced

� ACTVTRC(ON) + ApplicationTrace Stanza

Trace=OFF

� This connection not traced

� ACTVTRC(ON) ACTVCONO(ENABLED) +

MQCNO_ACTIVITY_TRACE_DISABLED +

ApplicationTrace Stanza Trace=ON

� This connection is traced

� Precedence
�mqat.ini

�MQCNO_ACTIVITY_*

�ACTVTRC

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Configuration Interaction - Notes

� These various configuration settings interact. For example, although you’ve used
the MQCNO_ACTIVITY_TRACE_DISABLED option, if ACTVCONO(DISABLED) is set,

your connection will still be traced. You were not allowed to opt-out.

� Perhaps an obvious one, but if you have a stanza saying tracing is off, then that
over-rides the ACTVTRC(ON) setting for your application.

� And finally a less obvious one. If you have opted-out by using
MQCNO_ACTIVITY_TRACE_DISABLED, and you’ve been allowed to do so with

ACTVCONO(ENABLED), but there is also a stanza for the application in the

mqat.ini file that says Trace=ON, then tracing will be on. The mqat.ini file

setting wins out.

� In essence there is a precedence order of the various configuration settings. The
ACTVTRC attribute can be overridden by the MQCNO_ACTIVITY_TRACE_* option

settings, which again can be overridden by the settings in the mqat.ini file.

MQ Technical Conference v2.0.1.7

Application Activity Trace

� PCF Messages written to a

SYSTEM queue.

� New message when...

� Operations = ActivityCount

� Lifetime = ActivityInterval

� Message data = MAXMSGL

� Application Disconnects

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE

Global settings stanza
AllActivityTrace:
ActivityInterval=1
ActivityCount=100
TraceLevel=MEDIUM
TraceMessageData=0
StopOnGetTraceMsg=ON

ZERO

Default

MAXDEPTH(3000)

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Application Activity Trace - Notes

� The output from Application Activity Trace is a series of messages written to the

SYSTEM.ADMN.TRACE.ACTIVITY.QUEUE.

� The messages will be written to the queue when one of the following statements is

true.

– The number of operations collected into the message exceeds the value of
ActivityCount in the mqat.ini file stanza (could be taken from the global stanza)

– The connection has been alive for longer than the value of ActivityInterval in the

mqat.ini stanza (again, this could be taken from the global stanza)

– The amount of data exceeds the maximum message size defined for the output queue.

� If ActivityCount is set to zero, the trace message is written when one of the

other points is reached.
� If ActivityInterval is set to zero, the trace message is written when one of the

other points is reached.

� Beware the definition of this queue comes with a MAXDEPTH(3000) (less than the

MAXDEPTH(5000) on the SYSTEM.DEFAULT.LOCAL.QUEUE. If you’re trying to

generate a lot of trace, this may limit you. Consider making bigger messages so

you get fewer of them with the above settings.

MQ Technical Conference v2.0.1.7

A simple example
Global settings stanza
AllActivityTrace:
ActivityInterval=1
ActivityCount=100

ApplicationTrace:
ApplName=amqsput*
Trace=ON
TraceLevel=HIGH

11:27:11 1048(1) [284us] C:\mqm8004\bin64\amqsput.exe MQCONNX
11:27:11 1048(1) [543us] C:\mqm8004\bin64\amqsput.exe MQOPEN Q1

11:27:14 1048(1) [80us] C:\mqm8004\bin64\amqsput.exe MQPUT Q1

11:27:17 1048(1) [83us] C:\mqm8004\bin64\amqsput.exe MQCLOSE Q1
11:27:17 1048(1) [83us] C:\mqm8004\bin64\amqsput.exe MQDISC Q1

11:27:16 1048(1) [50us] C:\mqm8004\bin64\amqsput.exe MQPUT Q1

C:\>amqsput Q1 MQG1
Sample AMQSPUT0 start
target queue is Q1
Message 1
Message 2

Sample AMQSPUT0 end

Command Prompt

MQ Technical Conference v2.0.1.7

N

O

T

E

S

A simple example - Notes

� Now that we’ve enabled Application Activity Trace, let’s try a simple example. As a

reminder we show the active values for this application, as we’re going to run the

simple amqsput sample.

� Depending on how fast you can type, you’ll probably get 4 messages on your

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE as a result of running this. The first

message contains the details of the MQCONNX and the MQOPEN, the next two

contain an MQPUT each, and the final message contains the MQCLOSE and
MQDISC. This is because we have ActivityInterval set to 1 second, so after

1 second it will write what has happened so far by this application as a trace

message. Unless you are planning on parsing the messages yourself, this

breakdown shouldn’t really matter to you.

� It is worth noting that the contents of any one Application Activity Trace PCF

message are all about a single MQ connection.

� With this output you can immediately see the general flow of the application.

However, there is much more data in the Application Activity Trace than this.

* Example output on previous slide from MO71 Activity Trace viewer

MQ Technical Conference v2.0.1.7

A simple example – application data
Correl_id:
00000000: 414D 5143 4D51 4731 2020 2020 2020 2020 'AMQCMQG1........'
00000010: 33BA 6259 2000 2C01 '3.bY..,. '
QueueManager: 'MQG1'
Host Name: ‘MQGWIN1'
IntervalStartDate: '2017-07-10'
IntervalStartTime: '11:43:13'
IntervalEndDate: '2017-07-10'
IntervalEndTime: '11:43:13'
CommandLevel: 800
SeqNumber: 1
ApplicationName: 'C:\mqm8004\bin64\amqsput.exe'
Application Type: MQAT_WINDOWS_NT
ApplicationPid: 8228
UserId: ‘mqgemusr'
API Caller Type: MQXACT_EXTERNAL
API Environment: MQXE_OTHER
Application Function: ''
Appl Function Type: MQFUN_TYPE_UNKNOWN
Trace Detail Level: 3
Trace Data Length: 10000
Pointer size: 8
Platform: MQPL_WINDOWS_NT

EXTERNAL | INTERNAL

OTHER | MCA | MCA_SVRCONN
COMMAND_SERVER | MQSC

IBM i platform only

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Application data – Notes

� Each message contains a set of data in it to identify the application being traced.

� Since each individual message only contains data about one MQ connection, this is

included at the start of every message written for the application, so even where our

short run of amqsput was broken up into 4 messages this information is included in

each message. This allows applications parsing and viewing this information to

correlate it as being for the same application.

� Within this set of information are things like the application name and type, and the

user id running it, the process ID and “thread” (more on thread identifiers later), the

environment and caller type, and a little about the queue manager involved.

* Example output on previous slide from amqsact sample

MQ Technical Conference v2.0.1.7

A simple example – API calls
MQOPEN(

Hobj :2 QUEUE(MQG1/Q1)
Open Options :00002010

00002000 MQOO_FAIL_IF_QUIESCING (Fail if quiescing)
00000010 MQOO_OUTPUT (Output)

CompCode :0
Reason :0 OK.

)
MQPUT(

Hobj :2 QUEUE(MQG1/Q1)
[128 bytes] Put Options (MQPMO)
StrucId :'PMO '
Version :1
PMO Options :00002044

00002000 MQPMO_FAIL_IF_QUIESCING (Fail if quiescing)
00000040 MQPMO_NEW_MSG_ID (New message id)
00000004 MQPMO_NO_SYNCPOINT (No syncpoint)

Resolved Q :'Q1 '
Resolved Qmgr:'MQG1 '

Data Length :9
Message :'Message 1'
CompCode :0
Reason :0 OK.

)

MQ Technical Conference v2.0.1.7

N

O

T

E

S

A simple example – API calls – Notes

� And then of course, there is all the data about each API call. You can see all the

options used, and in the case of some of the verbs, the entire option structure. For

example here, we don’t get the entire Object Descriptor (MQOD) as a blob but we

get each of the relevant fields individually, but for the MQPUT both the MQMD and

MQPMO structures are provided as a blob as well as some of the pertinent fields

being provided individually.

� You get the Completion Code and Reason Code for each verb, and the object

handle when that’s applicable. You don’t however, get the connection handle (more

on that later).

* Example output on previous slide from MO71 Activity Trace viewer

MQ Technical Conference v2.0.1.7

Activity Trace always shows MQI calls

Websphere MQ for Java Installation Verification Program
5724-B4 (C) Copyright IBM Corp. 2002, 2014. All Rights Reserved.
==

Please enter the IP address of the MQ server :
Please enter the user name (or RETURN for none) :
Please enter the password for the user :
Please enter the queue manager name :MQG1
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete –
SUCCESS: This MQ Transport is functioning correctly.
Press Enter to continue ...

Command Prompt

MQ Technical Conference v2.0.1.7

MQIVP – shown as MQ API calls
15:25:33 8028(1) [286us] java.exe MQCONNX
15:25:33 8028(1) [53us] java.exe MQOPEN
15:25:33 8028(1) [16us] java.exe MQINQ
15:25:33 8028(1) [16us] java.exe MQCLOSE
15:25:33 8028(1) [32us] java.exe MQOPEN
15:25:33 8028(1) [8us] java.exe MQINQ
15:25:33 8028(1) [10us] java.exe MQCLOSE
15:25:33 8028(1) [31us] java.exe MQOPEN
15:25:33 8028(1) [57us] java.exe MQOPEN
15:25:33 8028(1) [26us] java.exe MQINQ
15:25:33 8028(1) [24us] java.exe MQCLOSE
15:25:33 8028(1) [10288us] java.exe MQOPEN SYSTEM.DEFAULT.LOCAL.QUEUE
15:25:33 8028(1) [81us] java.exe MQPUT SYSTEM.DEFAULT.LOCAL.QUEUE
15:25:33 8028(1) [14605us] java.exe MQGET SYSTEM.DEFAULT.LOCAL.QUEUE
15:25:33 8028(1) [74us] java.exe MQCLOSE SYSTEM.DEFAULT.LOCAL.QUEUE
15:25:33 8028(1) [52us] java.exe MQCLOSE
15:25:33 8028(1) [31us] java.exe MQCMIT
15:25:33 8028(1) [23us] java.exe MQBACK
15:25:33 8028(1) [23us] java.exe MQDISC

15:25:33 8028(1) [81us] java.exe MQPUT SYSTEM.DEFAULT.LOCAL.QUEUE
Put Options :00000044

00000040 MQPMO_NEW_MSG_ID
00000004 MQPMO_NO_SYNCPOINT

15:25:33 8028(1) [14605us] java.exe MQGET SYSTEM.DEFAULT.LOCAL.QUEUE
Get Options :02000004

00000004 MQGMO_NO_SYNCPOINT
02000000 MQGMO_PROPERTIES_FORCE_MQRFH2

15:25:33 8028(1) [74us] java.exe MQCLOSE SYSTEM.DEFAULT.LOCAL.QUEUE
15:25:33 8028(1) [52us] java.exe MQCLOSE
15:25:33 8028(1) [31us] java.exe MQCMIT
15:25:33 8028(1) [23us] java.exe MQBACK
15:25:33 8028(1) [23us] java.exe MQDISC

MQ Technical Conference v2.0.1.7

MQIVP – zoom in on MQINQ calls
15:25:33 8028(1) [286us] java.exe MQCONNX
15:25:33 8028(1) [53us] java.exe MQOPEN
15:25:33 8028(1) [16us] java.exe MQINQ

Selectors :[0] 32 MQIA_PLATFORM
[1] 31 MQIA_COMMAND_LEVEL

15:25:33 8028(1) [16us] java.exe MQCLOSE
15:25:33 8028(1) [32us] java.exe MQOPEN
15:25:33 8028(1) [8us] java.exe MQINQ

Selectors :[0] 31 MQIA_COMMAND_LEVEL
15:25:33 8028(1) [10us] java.exe MQCLOSE
15:25:33 8028(1) [31us] java.exe MQOPEN
15:25:33 8028(1) [57us] java.exe MQOPEN
15:25:33 8028(1) [26us] java.exe MQINQ

Selectors :[0] 31 MQIA_COMMAND_LEVEL
[1] 32 MQIA_PLATFORM
[2] 2 MQIA_CODED_CHAR_SET_ID
[3] 2015 MQCA_Q_MGR_NAME
[4] 2032 MQCA_Q_MGR_IDENTIFIER

15:25:33 8028(1) [24us] java.exe MQCLOSE

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Trace always shows MQI calls – Notes

� The previous example was a very simple one. amqsput is a very simple MQ API

sample, and you learned nothing about what it did that couldn’t just as easily have

been gleaned by eyeballing the code.

� Of course, you don’t always have access to the code of an application, nor the logic

decision points it makes. And at other times your application may not be written in

the native MQ API, and so even having the code doesn’t always tell you exactly

what it is doing.

� Let’s run another very simple example, this time of the MQIVP java sample.

� With just the straight summary of the MQ API calls you can immediately see that it’s

doing a little more under the covers than it said it was doing. It does an MQINQ of

the queue manager – in fact several (slightly redundant) MQINQs.

� But then it continues as expected, with an MQOPEN, MQPUT, MQGET and

MQCLOSE of the SYSTEM.DEFAULT.LOCAL.QUEUE.

� Oddly it finishes up with an MQCMIT and then an MQBACK call, even though it

uses the *_NO_SYNCPOINT options explicitly throughout.

* Example output on previous slide from MO71 Activity Trace viewer

MQ Technical Conference v2.0.1.7

JmsProducer – shown as MQ API calls

===
Tid Time Operation CompCode MQRC HObj (ObjName)

001 15:01:11 MQXF_CONNX MQCC_OK 0000 -
001 15:01:11 MQXF_OPEN MQCC_OK 0000 2 ()
001 15:01:11 MQXF_INQ MQCC_OK 0000 2 ()
001 15:01:11 MQXF_CLOSE MQCC_OK 0000 2 ()
001 15:01:13 MQXF_DISC MQCC_OK 0000 -

===
===
Tid Time Operation CompCode MQRC HObj (ObjName)

001 15:01:11 MQXF_CONNX MQCC_OK 0000 -
001 15:01:11 MQXF_OPEN MQCC_OK 0000 2 (Q1)
001 15:01:12 MQXF_PUT MQCC_OK 0000 2 (Q1)
001 15:01:12 MQXF_PUT MQCC_OK 0000 2 (Q1)
001 15:01:13 MQXF_CLOSE MQCC_OK 0000 2 (Q1)
001 15:01:13 MQXF_DISC MQCC_OK 0000 -

===

C:\>java JmsProducer -m MQG1 -d Q1

Command Prompt

JMSConnection

JMSSession

MQ Technical Conference v2.0.1.7

N

O

T

E

S

JmsProducer –MQ API calls – Notes

� In this sample, one of the JMS supplied samples, we can again see another

interface translated into native MQ API calls in the trace.

� Those of you with a working knowledge of JMS, will be aware of the concept of a

JMSConnection and a JMSSession, both of which translated into an MQ connection

under the covers. We can see that in action in this example. The first MQCONNX is

the JMSConnection, and the second, within which the MQPUT occurs is the

JMSSession.

* Example output on previous slide from amqsact sample

MQ Technical Conference v2.0.1.7

What can you do with it?

� Spot applications making more MQCONN(X) calls than MQDISC calls

� Spot redundant code, like an application making multiple MQINQ calls

� Spot incorrect, or inadvisable uses of certain options on MQ API calls
� More examples in a moment

� Spot incorrect uses of attributes in the MQMD of messages
� More examples in a moment

MQ Technical Conference v2.0.1.7

N

O

T

E

S

What can you do with it? – Notes

� We’ve already seen a few examples of how, even just in the basic summary

showing the MQ API invocations made, you can spot what might be redundancies,

inefficiencies or downright errors in the application code.

� For example, you could spot an application making more MQCONN(X) calls than it

makes MQDISC calls, and thus solve that MAXCHLS problem you’ve been seeing.

� You have all the options used on each MQ API call and can spot where there are

problems in the code with the options being used. More examples to follow.

� You get to see the MQMD fields at MQPUT and MQGET time so you can see

whether your application messages are conforming to your company’s best

practices. More examples to follow.

MQ Technical Conference v2.0.1.7

Option checking
MQGMO
Get Options :00002004

00002000 MQGMO_FAIL_IF_QUIESCING
00000004 MQGMO_NO_SYNCPOINT

No MQGMO_CONVERT

MQGMO
Get Options :00002001

00002000 MQGMO_FAIL_IF_QUIESCING
00000001 MQGMO_WAIT

No Syncpoint option

MQOPEN(
Hobj :8 QUEUE(MQG1/Q1)
Open Options :00000410

00000010 MQOO_OUTPUT
00000400 MQOO_SET_IDENTITY_CONTEXT

MQPUT(
Hobj :8 QUEUE(MQG1/Q1)
MQPMO
Put Options :00000004

00000004 MQPMO_NO_SYNCPOINT

Same Hobj ties
Together APIs

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Option checking – Notes

� Sometimes when you use incorrect options, you will get an

MQRC_OPTIONS_ERROR from MQ. However, there are some options or option

combinations that, while not an error, are not necessarily advisable.

� Doing an MQGET without using the MQGMO_CONVERT option. It’ll work fine until

your platform coverage extends to include new codepages.

� Doing an MQGET without being explicit about syncpoint. It’ll work fine until you

connect the same application to a z/OS queue manager.

� You can spot problems that are as result of incorrect options being used across two

different MQ APIs. For example, when an MQOPEN uses the

MQOO_SET_IDENTITY_CONTEXT option but then the MQPUT doesn’t then use

MQPMO_SET_IDENTITY_CONTEXT. This *might* be OK if it uses the PMO option

for only some MQPUTs. Of course, this could be worse, if the application does use

the option at MQPUT time but then doesn’t fill anything into the identity fields.

� There are no doubt plenty of other examples you can think of. See later for a few

things that unfortunately cannot be checked with this trace.

* Example output on previous slide from MO71 Activity Trace viewer

MQ Technical Conference v2.0.1.7

Message attributes
Report Options: 0
Msg_type: MQMT_DATAGRAM
Expiry: -1
Format_name: 'MQSTR'
Priority: -1
Persistence: 2
Msg_id:
00000000: 414D 5120 4D51 4731 2020 2020 2020 2020 'AMQ MQG1 '
00000010: 2365 6559 2000 9B02 '#eeY .ø. '
Correl_id:
00000000: 0000 0000 0000 0000 0000 0000 0000 0000 '................'
00000010: 0000 0000 0000 0000 '........ '
Reply_to_Q : ''
Reply_to_Q_Mgr: ''
Coded_char_set_id: 0
Encoding: 546
Put_date: '20170713'
Put_time: '02311968'

MQPER_PERSISTENCE_AS_Q_DEF

MQPRI_PRIORITY_AS_Q_DEF

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Message attributes – Notes

� The fields from the MQMD are traced out on MQ API calls that make use of it. For

an MQPUT, these are mainly the input fields from the application, so you can see

applications that are not filling in a specific priority or persistence and using the

defaults.

� You can check the format field is correctly supplied, and expiry matches company

policy for example.

� You cannot unfortunately check for applications that are forgetting to the null out the

message id for each MQPUT as the message id in the trace is the resultant

message id that was assigned to the message. This is probably more useful for

most cases to be able to track where that message went next.

* Example output on previous slide from amqsact sample

MQ Technical Conference v2.0.1.7

What can’t you do with it?

� Detect MQCONN(X) calls that result in MQRC_ALREADY_CONNECTED (2002)

� Detect calls that fail with MQRC_OPTIONS_ERROR (2046)

� Detect MQPUT calls that don’t use a syncpoint option!

� Detect MQPUT calls that forget to reset the MsgId to nulls

MQ Technical Conference v2.0.1.7

N

O

T

E

S

What can’t you do with it? - Notes

� An MQCONN(X) call that results in MQRC_ALREADY_CONNECTED (2002) does

not get traced – doesn’t get far enough inside the queue manager to be detected

and traced. In the case of a client connection, doesn’t even make it over the socket

to the queue manager.

� Any API call that results in MQRC_OPTIONS_ERROR (2046) does not get traced.

� Unfortunately, if you omit to provide a syncpoint option on MQPUT, it has been

filled in as MQPMO_NO_SYNCPOINT for you before the API call is traced, so you

cannot detect the case where an application is not coding it.

� Unfortunately, if you are trying to detect an application which is not nulling out the

Message ID before calling MQPUT, you can’t because the Message ID that was

created for the message is traced rather than the input value. You could still

compare it with the previous MQPUT to see if they were the same to detect the

problem – just not quite so easy.

MQ Technical Conference v2.0.1.7

Multi-threaded applications

� MQ’s notion of a thread is not the same as the O/S thread
� Can be seen in output from DISPLAY CONN

� This thread ID is also what is seen in Application Activity Trace

� It is the thread that the connection was made on

� It is not the thread that the hConn might subsequently be used on
� Note APAR IT22390

� hConn is also not supplied in Application Activity Trace

AMQ8276: Display Connection details.
CONN(2365655920009701) EXTCONN(414D51434D5147312020202020202020)
PID(11092) TID(1)

AMQ8276: Display Connection details.
CONN(2365655920003D01) EXTCONN(414D51434D5147312020202020202020)
PID(11092) TID(5)

Command Prompt – runmqsc MQG1

11:27:11 11092(5) [284us] C:\MQGem\mqmonntp.exe MQCONNX

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Multi-threaded applications – Notes

� When an application makes a connection to MQ, you can see it’s details in the
output from a DISPLAY CONN command. This shows the process id (which is an

O/S construct) and the thread id (which is an MQ identifier).
� The thread id shown in this output is the thread id upon which the MQCONN(X) call

was made.
� This TID which you see in DISPLAY CONN, is also the thread ID reported in

Application Activity Trace.
� The MQ thread ID is the thread the hConn was created on. If you have an

application that creates several connections on the main thread, say, and then

starts it’s various worker threads and uses the connections on those other threads,

that is not the thread the connection was created on, the thread ID shown in the

Application Activity Trace is not the thread that the connection is being used on, it is

the thread the connection was created on. This may change in the future as a result

of APAR IT22390 which has been raised to address this).
� You’ll have noticed in the examples so far, that the hConn is also not something

that is traced – hObj’s are, but not hConn.

� So that poses the question, how do I tie together the operations done on a single
hConn if I can’t use the thread or the hConn to do this?

MQ Technical Conference v2.0.1.7

Tying together operations on an hConn
� Thread ID not suitable; hConn not supplied; How to tie things together?

� Connection ID returned on MQCONN(X) trace

� Connection ID is the Correlation ID for ALL Application Activity Trace messages

for that connection

MQI Operation: 0
Operation Id: MQXF_CONNX
ApplicationTid: 8
OperationDate: '2017-07-13'
OperationTime: '15:56:38'
ConnectionId:
00000000: 414D 5143 4D51 4731 2020 2020 2020 2020 'AMQCMQG1 '
00000010: 2365 6559 2000 B301 '#eeY ... '
QueueManager: 'MQG1'

MonitoringType: MQI Activity Trace
Correl_id:
00000000: 414D 5143 4D51 4731 2020 2020 2020 2020 'AMQCMQG1 '
00000010: 2365 6559 2000 B301 '#eeY ... '
QueueManager: 'MQG1'

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Tying together operations – Notes

� Since the thread ID may not suffice for tying together the operations made by a
single hConn, either because your connections were all made on the same thread,

or because you have several hConns on a single thread, and because you are not

provided with the hConn value in Application Activity Trace, how then can you tie

together operations made on the same hConn?

� The answer is to use the Connection ID.

� You’ll have noticed that the Connection ID is a field returned to you in the trace for
an MQCONN(X) call.

� This value is also the Correlation ID for all Application Activity Trace messages for

this connection. It is a unique value and can therefore be use to correlate all the

data for a particular connection handle.

MQ Technical Conference v2.0.1.7

MQ Appliance - Configuration
� Can’t edit files, so how to configure mqat.ini?

� Use setmqini (and dspmqini) to manipulate the contents of the mqat.ini file

� Can only edit AllActivityTrace stanza – not ApplicationTrace stanzas

M2000# mqcli
M2000(mqcli)# setmqini -m MQG1 -s AllActivityTrace -k TraceLevel -v HIGH
Key TraceLevel was successfully updated in stanza AllActivityTrace for queue manager
MQG1.
M2000(mqcli)# dspmqini –m MQG1 –s AllActivityTrace
AllActivityTrace:
ActivityInterval = 1
ActivityCount = 100
TraceLevel = HIGH
TraceMessageData = 0
StopOnGetTraceMsg = ON
SubscriptionDelivery = BATCHED

PuTTY

MQ Technical Conference v2.0.1.7

N

O

T

E

S

MQ Appliance – Configuration – Notes

� The astute among you may have spotted an issue with using Application Activity
Trace on the MQ Appliance. You can configure the ACTVTRC attribute on the queue

manager, but how can you change the other settings without the ability to edit files.
The mqat.ini file is off limits on the MQ Appliance just as with any other file.

� Well, that’s not entirely true. While you cannot hand craft the mqat.ini file, it is

possible to configure it’s contents with an MQ Appliance command, setmqini. It’s

partner command dspmqini allows you to look at the contents.

� These MQ Appliance only commands are designed for editing ini files for MQ, and
can be used to configure values in the qm.ini file and the mqat.ini file. You

don’t need to know which file you’re directing the command to, the stanza you

specify on the command tells it what you’re changing.

MQ Technical Conference v2.0.1.7

MQ Appliance – Tracing specific Application

� Subscribe to SYSTEM topic

� Wildcard scheme
�CHAR to use ‘*’ or ‘?’

�TOPIC to use ‘#’ or ‘+’

Global settings stanza
AllActivityTrace:
ActivityInterval=1
ActivityCount=100
Trace=ON
TraceLevel=HIGH

ApplicationTrace:
ApplName=amqsput*

Subscription to:-

$SYS/MQ/INFO/QMGR/MQG1/ActivityTrace/ApplName/amqsput*

Using MQSO_WILDCARD_CHAR

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Tracing specific Application – Notes

� In order to tune Application Activity Trace on the MQ Appliance to only apply to a
specific application, as you’ve seen by configuring the ApplicationTrace

stanzas in mqat.ini on the queue manager, you have to use a different

methodology.

� You have to create a subscription to a special system topic that identifies the

application you want to trace.

MQ Technical Conference v2.0.1.7

Subscriptions to Activity Trace

� Application Name

� Channel Name

� Connection ID

� Also available in IBM MQ V9.0.0

$SYS/MQ/INFO/QMGR/qmgr_name/ActivityTrace/ApplName/appl_name

$SYS/MQ/INFO/QMGR/qmgr_name/ActivityTrace/ChannelName/chl_name

$SYS/MQ/INFO/QMGR/qmgr_name/ActivityTrace/ConnectionId/conn_id

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Subscriptions to Activity Trace – Notes

� The example we just showed was equivalent to the settings we’d previously seen in
the mqat.ini file. However, there is more that can be done with these

subscriptions.

� The pattern of the topic string you subscribe to follows the pattern shown. You can

subscribe to activity trace for an Application Name (as already seen) a Channel

Name, or a Connection ID.

� This method of collecting Application Activity Trace was originally provided only on

the MQ Appliance, for the reasons already discussed, but since it offers more

function than just the equivalent manner of choosing a specific application to trace,

it was later, in MQ V9.0.0, added to the base queue manager too.

MQ Technical Conference v2.0.1.7

More Subscriptions to Activity Trace

� Trace all sample Applications

� Trace all Channels in Cluster SALES

� Trace all Activity Trace

$SYS/MQ/INFO/QMGR/qmgr_name/ActivityTrace/ApplName/amqs*

$SYS/MQ/INFO/QMGR/qmgr_name/ActivityTrace/ChannelName/SALES.*

$SYS/MQ/INFO/QMGR/qmgr_name/ActivityTrace/#

MQ Technical Conference v2.0.1.7

N

O

T

E

S

More Subscriptions to Activity Trace – Notes

� This page shows a few more examples of the topic strings you would subscribe to,

to turn on Application Activity Trace for certain things.

MQ Technical Conference v2.0.1.7

Creating a Subscription for Activity Trace

MQSD sd = {MQSD_DEFAULT};

sd.ObjectString.VSPtr =
“$SYS/MQ/INFO/QMGR/MQG1/ActivityTrace/ApplName/amqs*”;

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
sd.Options = MQSO_CREATE

| MQSO_SET_CORREL_ID
| MQSO_WILDCARD_CHAR;

memcpy(sd.SubCorrelId, MQCI_NONE, MQ_CORREL_ID_LENGTH);
MQSUB(hConn, ...

DEFINE SUB('ActivityTraceSamples')
TOPICSTR('$SYS/MQ/INFO/QMGR/MQG1/ActivityTrace/ApplName/amqs*')
DEST(SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE)
DESTCORL(0) WSCHEMA(CHAR)

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Creating a Subscription – Notes

� If you plan to make subscriptions in order to gather Application Activity Trace, there

are a few important points to note in order for them to work correctly.

� First of all you must use the correct topic string. You’ve seen examples already on

previous pages. If you have a wildcard in the topic string, you MUST use the correct

wildcard scheme. For example if you have an ‘*’ or a ‘?’ wildcard, then you must

use the character wildcard scheme, and if you have a ‘#’ or a ‘+’ wildcard then you

muse use the topic wildcard scheme (which is the default).

� Secondly, you must ensure you are receiving the Correlation ID from the publisher,

rather than every message delivered to you having your subscriber Correlation ID.
In order to do this you must make a subscription with a SubCorrelId (DESTCORL)

of all nulls (MQCI_NONE). As discussed earlier, the Correlation ID is what represents

the connection and helps to tie together MQ API calls made by the same

connection. If this is not correctly set then this tying together will not work.

MQ Technical Conference v2.0.1.7

Using amqsact to make subscriptions

� amqsact will make subscriptions from V8.0.0.2
� For connecting to an MQ Appliance

� The base queue manager will publish Activity Trace to those topics from V9.0.0

� You have three different flags for the different resource types
� -a ApplName

� -c ChannelName

� -i ConnectionId

� Beware that amqsact subscriptions don’t request the publishers Correl ID
� Source amqsact0.c is provided, so you could edit and rebuild

C:\>amqsact –m MQG1 –a amqsput* -w 60
Subscribing to the activity trace topic:
'$SYS/MQ/INFO/QMGR/MQG1/ActivityTrace/ApplName/amqsput*'

Command Prompt

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Using amqsact to make subscriptions – Notes

� The sample that is supplied with IBM MQ to parse and display the output from

Application Activity Trace is also able to make subscriptions. This ability was added

to the sample in the base product in V8.0.0 FixPack 2 for use when connecting to

the MQ Appliance. It will successfully make the subscription if you use it against a

V8 queue manager, but nothing will be published to that topic on a non-Appliance

queue manager until it is running at V9.0.0.
� You have three different flags you can use to drive amqsact in this way. –a to

subscribe to ApplName topics, -c to subscribe to ChannelName topics, and –i to

subscribe to ConnectionId topics.

� Beware that the subscriptions which amqsact makes do not request the publishers

Correlation ID, so you won’t be able to correlate between calls made by the same

connection. If you’re only running single connection applications, that won’t matter.
� amqsact is a sample with source provided, so you could edit the sample and

rebuild it with the additional option shown on the previous page.

MQ Technical Conference v2.0.1.7

Tools to View Application Activity Trace
� IBM Supplied sample program amqsact

� amqsactz – enhanced version of above hosted on Capitalware website

C:\>amqsact -m MQG1 –b
===
Tid Date Time Operation CompCode MQRC HObj (ObjName)

001 2017-07-14 16:28:17 MQXF_CONNX MQCC_OK 0000 -
001 2017-07-14 16:28:17 MQXF_OPEN MQCC_OK 0000 2 (Q1)
001 2017-07-14 16:28:19 MQXF_PUT MQCC_OK 0000 2 (Q1)
001 2017-07-14 16:28:20 MQXF_PUT MQCC_OK 0000 2 (Q1)
001 2017-07-14 16:28:20 MQXF_PUT MQCC_OK 0000 2 (Q1)
001 2017-07-14 16:28:21 MQXF_PUT MQCC_OK 0000 2 (Q1)
001 2017-07-14 16:28:21 MQXF_PUT MQCC_OK 0000 2 (Q1)
001 2017-07-14 16:28:21 MQXF_CLOSE MQCC_OK 0000 2 (Q1)
001 2017-07-14 16:28:21 MQXF_DISC MQCC_OK 0000 -

===

Command Prompt

MQ Technical Conference v2.0.1.7

Tools to View Application Activity Trace

� Mark Taylor’s MQ Explorer extension – Support Pac MS0P

MQ Technical Conference v2.0.1.7

Tools to View Application Activity Trace

� MQGem Software’s MO71 – Application Activity Trace Viewer

MQ Technical Conference v2.0.1.7

Tools to View Application Activity Trace

� Nastel’s AutoPilot Insight

MQ Technical Conference v2.0.1.7

N

O

T

E

S

Tools to View Activity Trace – Notes

� There are various tools that parse and display Application Activity Trace.
� Supplied with the product is a sample amqsact which can be used to collect and

display the trace information. It can also make subscriptions as shown on an earlier
slide. An updated version of it called amqsactz is available from

http://www.capitalware.com/mq_code_c.html

� Mark Taylor’s Support Pac MS0P which extends MQ Explorer, has a formatter for

Activity Trace messages.

� MQGem Software’s MO71 has an Activity Trace Viewer with extensive filtering

capability.

� Nastel’s AutoPilot also processes Activity Trace (thanks to Richard Nikula for the

screenshot)

MQ Technical Conference v2.0.1.7

Application Activity Trace: Useful Resources

� IBM Knowledge Center
� Application Activity Trace (IBM MQ)
� https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.mon.doc/q037520_.htm

� Application Activity Trace (MQ Appliance)
� https://www.ibm.com/support/knowledgecenter/SS5K6E_1.0.0/com.ibm.mqa.doc/monitoring/mo00020_.htm

� developerWorks article by Emma Bushby
� “Increasing the visibility of messages using WebSphere MQ Application Activity Trace”
� https://www.ibm.com/developerworks/websphere/library/techarticles/1306_bushby/1306_bushby.html

� Presentation from MQTC v2.0.1.5 by Tim Zielke
� “MQ Problem Determination with Tracing”

� http://www.mqtechconference.com/sessions_v2015/MQTC_v2015_Tracing.pdf

� Blog Post about MO71 Application Activity Trace Viewer
� https://mqgem.wordpress.com/2017/07/13/application-activity-trace-viewer/

